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Abstract

A new mesh-particle scheme is constructed for uncertainty propagation in vortical flow. The scheme is based on the
incorporation of polynomial chaos (PC) expansions into a Lagrangian particle approximation of the Navier—Stokes equa-
tions. The main idea of the method is to use a unique set of particles to transport the stochastic modes of the solution. The
particles are transported by the mean velocity field, while their stochastic strengths are updated to account for diffusive and
convective effects induced by the coupling between stochastic modes. An integral treatment is used for the evaluation of the
coupled stochastic terms, following the framework of the particle strength exchange (PSE) methods, which yields a con-
servative algorithm. It is also shown that it is possible to apply solution algorithms used in deterministic setting, including
particle-mesh techniques and particle remeshing. Thus, the method combines the advantages of particles discretizations
with the efficiency of PC representations. Validation of the method on uncertain diffusion and convection problems is first
performed. An example is then presented of natural convection of a hot patch of fluid in infinite domain, and the compu-
tations are used to illustrate the effectiveness of the approach for both large number of particles and high-order PC
expansions.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Particle method; Uncertainty; Spectral method; Stochastic polynomials; Fluid flow

1. Introduction

Simulation of real fluid flows is often challenged by incomplete knowledge of model parameters,
including initial conditions, boundary conditions, external forcing, physical properties of the fluid
and its constituents. In these situations, one may consider unknown model data as random or
uncertain quantities. Thus, it becomes essential to quantify the impact of these uncertainties on the
numerical predictions, for instance generating a statistical characterization that can be used to
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establish confidence measures, estimate limits of predictability, and/or support model-based decision
analysis.

Uncertainty propagation and quantification in fluid flows has recently received considerable attention,
particularly through the development of efficient spectral techniques based on polynomial chaos (PC) expan-
sions. PC based methods were originally developed for engineering problems in solid mechanics [17] and
subsequently applied to a large variety of problems, including flow through porous media (e.g. [16]), thermal
problems (e.g. [18,27,26,24,25]) and reacting systems (e.g. [10,29]). PC expansions consist in the representa-
tion of the uncertain data as functionals of a finite set of independent random variables with prescribed
densities, the uncertainty germ, and in expanding the dependence of the model solution using a suitable
basis of uncorrelated functionals of the germs. A classical choice for the basis is a set of polynomials in
the germ. If the germ has zero-mean normalized Gaussian components, one obtains the Wiener—Hermite
PC basis [33,3], which is formed of generalized Hermite polynomials. Other density types of the germ com-
ponents result in various families of orthogonal polynomials or mixtures of orthogonal polynomials [34].
Piecewise polynomials [32] and multi-wavelets [24,25] were also recently proposed as elements of the basis,
as these representations are better suited to account for complex or discontinuous dependencies of the
model with regard to the uncertain data. A case-in-point is the occurrence of bifurcation points (or surfaces)
within the range of uncertain parameter(s). The first applications of PC methods to Navier—Stokes equa-
tions appeared in [23,27,35]. A review of recent works using PC expansions in Navier—Stokes computations
can be found in [19]. To our knowledge, PC expansions have so far been applied to Eulerian fluid flow mod-
els, including finite difference, finite element, spectral element, and finite volume approximations. The prin-
cipal objective of this work is to explore the application of PC methods in conjunction with Lagrangian
particle approximations of the Navier-Stokes equations. As discussed in the extensive exposition of Cottet
and Koumoutsakos [8], particle methods have long history [31,5,21], are theoretically well-grounded [28,9]
with available convergence results [1,4,12,7]. Their advantages include the flexibility to treat complex and
moving boundary problems, the ability to tackle in a natural fashion problems in infinite domains, and
the ability to deal with problem with low or even vanishing diffusivity. This last feature is particularly
attractive as stabilized Eulerian deterministic convection schemes typically rely on upwinding, which are dif-
ficult to extend to a stochastic setting, especially when the velocity has large uncertainty. In contrast,
Lagrangian particle methods handle convection in a stable and non-diffusive way. This aspect will conse-
quently be a focus of the present study.

The paper is organized as follows. Section 2 summarizes the formulation of a deterministic particle method,
whose extension to stochastic problems is later carried out in Section 3. The extension strategy is based on the
use of a unique set of particles to transport all the uncertain modes of the solution. In Section 4, a validation of
the proposed method is presented by considering two simple problems: the purely diffusive evolution of an
uncertain Gaussian vortex, and the non-diffusive convection of a passive scalar by an uncertain velocity field.
The validation is performed by comparison with exact solutions. To demonstrate the effectiveness of the pro-
posed technique, the simulation of the natural convection of a localized patch of heated fluid in an infinite
domain is considered in Section 5. Major conclusions are summarized in Section 6, which also provides a brief
discussion of further improvement and generalization.

2. Deterministic particle method

In this section, we detail the deterministic particle formulation of the problem considered, and discuss accel-
eration techniques and implementation issues. The deterministic equations of the flow are first presented in
Section 2.1. In Section 2.2, the particle approximation of the deterministic problem is outlined, using integral
representations of the diffusion and buoyancy terms. The derivation of these integral kernels is detailed in Sec-
tion 2.3. Diffusion is accounted for using the particle strength exchange (PSE) method of Degond and Mas-
Gallic [12], which provides a suitable approach for extending the scheme to the stochastic setting. Buoyancy
terms are similarly discretized in a conservative way following the recent work of Eldredge et al. [15]. Section
2.4 discusses the implementation of a particle-mesh method devised to reduce the computational cost of the
particle velocity evaluations. Finally, a remeshing procedure for the deterministic problem is briefly discussed
in Section 2.5.
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2.1. Two-dimensional Boussinesq equations
In the Boussinesq limit, the natural convection in an infinite domain of a viscous Newtonian fluid is gov-

erned by the incompressible Navier-Stokes equations and the energy conservation equations. For 2D flow,
these equations are:

Pr
—+u-Vu=—-Vp+

A Prle,
o e u+ e,
o0 1 (1)
4w VO = ——A0,
ot " vV Ra
V-u=0,

where u(x, t) is the normalized velocity, p(x,?) is the normalized pressure, and 0(x, ¢) is the normalized temper-
ature. 0 is defined according to:

T — Tref
0= 2
AT (2)

where T and AT, are the characteristic temperature and temperature difference, respectively. The Bous-
sinesq limit of the Navier-Stokes equations is valid for AT,/ Trer < 1, i.€. for small characteristic deviations
from the reference of the temperature. Variables are normalized with respect to the appropriate combination
of reference length L., velocity V, time © = L./V, density p and pressure P. = p>. The normalization leads to
the usual definitions of Prandtl and Rayleigh numbers, respectively Pr = uC,/x and Ra = pgPAT L}/ (ux),
where f5 is the coefficient of thermal expansion, g is gravitational acceleration, u and x are the viscosity and
heat conductivity, and C, the heat capacity of the fluid.

The Boussinesq equations need to be complemented with initial conditions u(x,0), 6(x,0), as well as bound-
ary conditions. We shall consider the following boundary conditions:

u(x,t) =0, 6O(x,)=0 as|x|] — oco. (3)
Defining the vorticity @ = V A u = we., and taking the curl of the momentum equation we obtain:

ow Pr o0

—+V. = A Pr— 4

6t + (”(,U) /Ra' w + ax J ( )

with initial conditions w(x,0) = (V Au(x,0)) - e, and boundary condition w(x,f) =0 as |x| — oco. Next, we
introduce the stream function Y(x, ¢), defined by:

u=VA®We) A)y=-o. (5)
The normalized governing equations to be solved are then given by:

ow Pr o0

o0 1

—+ V- (ud) = A0,

ot (u0) VRa

AY = —o, (6)
u=VA(Ye),

o(x,0) = (VAu(x,0)) e,

u,0— 0 as|x| — oo.

2.2. Particle method

The principle of particle methods is to discretize the fluid domain into Lagrangian elements (or particles),
which carry vorticity and temperature. The position x, of a particle obeys:
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dx
d—tp = u(x,, 1). (7)
The velocity and vorticity fields are related through the Biot-Savart integral:
-1 -1
= — * = — y
o KO = - A (x,y) Ao dy, (8)

with the 2D kernel given by:

H(x,p) = (x—p)/|]x -y

As discussed further below, the Laplacian and gradient operators can be approximated by integral conserva-
tive operators of the form:

Ag~ | Z(x=p)laly) - q(x)] dy,
i (9)
%ﬁ ~ /Rz G (x = )la(v) + q(x)] dy.

With these representations, the transport equations for the vorticity and heat can be recast as:

G e x| ) noly) a0
c;—cf = \/% /R Z(x, = y)[oy) - o(x,)] dy +Pr/RZ G (x, — ) [0(y) + 0(x,)] dy, (11)
T L2000 - 00w 0y 12

where d/dr is the Lagrangian (material) derivative.

The particle discretization relies on a set of Np Lagrangian elements, with associated position X,(¢), circu-
lation I'(z) and heat @(t). We denote by ¢ the core radius of the particles, and introduce the smoothing func-
tion {(x) such that {(x) — d(x) as e — 0, where ¢ is the Dirac delta function. The smoothed approximation of
the vorticity and temperature fields are

) = in(r)cxx —Xi(0), 0(x,1) = Z O,(1)C.(x — Xi(1)). (13)

Denoting ¢, the regularized version of ¢, the evolution equations for the particle positions and strengths
are:

dX;

P er (X:, X)), (14)
dt ij (X;— X))S[I; —F,—]+PrngX(X,-—X,)S[@,+@,-}, (15)
d(i \/1_23 (X; — X,)S[O, — 0. (16)

In the equations above, we used S to denote the volume of the particles, assumed to be the same for all par-
ticles. It is seen that the particles move with the local fluid velocity, while their vorticity and temperature
evolve due to diffusion and buoyancy. The initial conditions for the discrete system equations are:

I,(0) ~ o(X,(0),0)S,  6,(0) ~ 0(X,(0),0)S. (17)

These initial conditions, together with (14)—(16), constitute a system of ODEs that approximates the contin-
uous system in (6).
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2.3. Diffusion and buoyancy terms

As mentioned above, integral representations of the diffusion operator and buoyancy terms are used in the
computations. Before outlining these representations, a brief discussion is provided of the rationale behind the
present approach. For brevity, the discussion focuses on the diffusion term only. One first notes that the rep-
resentation announced in (15), (16) is not the only means of dealing with diffusion in the context of particle
methods. Alternative treatments include random walk and diffusion velocity methods.

In the random walk method [5], diffusion is simulated using random displacement of the particles having a
zero mean, and variance proportional to the diffusivity and time step. The strength of the particles, on the
other hand, remains unchanged. This approach offers several attractive features, including ease of implemen-
tation, the obvious conservative character of the algorithm, and the independence of the random displace-
ments so that particle-particle interactions do not intervene. Unfortunately, extension of the random walk
algorithm to stochastic problems tackled using PC representations is generally difficult. An example where
severe difficulties arise concerns the case of an uncertain diffusivity, because in this case the variance of the
random displacements would be uncertain.

In the diffusion velocity method [13,30,2], the diffusion term is recast as a transport term, and diffusion is
consequently accounted for by moving the particles using the sum of local convection and diffusion velocities.
The particle strength is not affected, and so the method is conservative. Unfortunately, the diffusion velocity
method does not appear to be generally well-suited for extension to the uncertain case. As for random walk,
uncertainty in the diffusion velocity makes it difficult to devise a particle transport scheme. This difficulty is
further compounded by the non-linearities appearing in the definition of the diffusion velocity. Being stochas-
tic, the diffusion velocity must be represented in terms of PC expansions, which adds complexity and may
require significant computational overhead.

In order to avoid the difficulties outlined above, the PSE method is adopted for the purpose of modeling
diffusion. As further discussed below, PSE amounts to an update of the particle strengths but not of their posi-
tions. As further discussed in Section 3, this feature provides a distinct advantage in a stochastic setting, as it
makes possible to define representations involving a single set of particles. The PSE method relies on an inte-
gral approximation of the Laplacian, which rely on the definition of a radially-symmetric smoothing function,
1., defined according to:

n.(x) = n(lel/o),

where 7 is a radial function and e is the core parameter. Following [12], # is assumed to satisfy the moment
conditions:

[ e = [ v =2

RZ RZ

/ XyPn(x)dx =0, 1<o+o<m+1, o, #2.
RZ

Based on these definitions, it can be shown [12] that the Laplacian of a generic scalar field ¢ can be approx-
imated by:

Ac = L (.%c— ) + O(e), (18)

€

where % denotes the convolution operator.
Applying the approximation above to the vorticity and temperature fields associated with the correspond-
ing smoothed particle representations leads to the following definition of the diffusion kernel,

E(x—y)Zglzne(x—y), (19)

which is used in the evolution equations for the particle strengths (15) and (16). Note that due to the symmetry
of the kernel, the diffusion treatment in (15) and (16) is conservative.
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The generalization of the integral approximation of the diffusion operator to derivatives of arbitrary order
was recently conducted by Eldredge et al. [15]. They provide the following integral approximation of the deriv-
ative operator:

Df = )~ i [F0)+ (D" S (x- 9) . (20)

ol -l

for positive d-dimensional multi-index f5, |f| = Zf’zl p;. They derived constraints on the moments of P to
achieve approximation of arbitrary order, and proposed a set of 2D kernels, for both first derivatives and
the Laplacian, with accuracy up to eighth order. In this work, we use the second-order kernel [15]:

() =+ expl-|xf]. e1)
Applying the integral approximation of 8/dx to the particle representation leads to:

9(X;, X)) = %’1?) (X — X)), (22)
where

1) =~ 2 expl-xf.

The summations in (15) and (16) suggest that the complexity of the evaluation of the integral diffusion and
buoyancy terms are (/(Np*). However, the kernels have fast decay with x — y, and so the quadrature can in
fact be truncated to particles in a finite neighborhood of the local evaluation point. Specifically, interactions
between particles separated by a distance greater than 4¢ are neglected in the computations. This results in
significant reduction of the CPU cost by keeping track of the list of interacting particles, which allows discret-
izations using a large number of particles.

2.4. Acceleration of velocity computation

The computation of the velocity for all the particles using (14) requires ¢/(Np*) operations. For a large num-
ber of particles, the resulting CPU cost is prohibitive. Consequently, fast methods have been proposed to
speed-up the evaluation of particles velocity. These include hybrid, or particle-mesh, methods and fast multi-
pole methods.

The multipole methods are based on the idea that one can globally approximate the velocity induced by a
cluster of particles, provided that the observation point is located far enough from the cluster. This is usually
achieved through multipole expansions, using a hierarchical data structure of the particles distribution.
Depending on their construction, the multipole techniques exhibit theoretical computational costs scaling
as (O(Np) or O(NplogNp).

The hybrid methods rely on a mesh to compute the velocity field by solving a Poisson’s equation for the
streamfunction [6]. The procedure involves three steps: the projection step, the resolution of the Poisson’s
equation and the interpolation step. In the projection step, a mesh covering the particles is constructed and
the values of the vorticity field are estimated at the mesh points using a projection operator (see Appendix
A). The Poisson equation Ay = — is then solved on the mesh. We rely on Dirichlet boundary conditions that
are obtained from the integral representation of the streamfunction:

W)= [ A iol) dy~ 31 (x X)) 23

R? J=1

Once the streamfunction is obtained, numerical differentiation is used to determine the velocity at the mesh
points. Second-order centered differences are used for this purpose. The final step consists in interpolating
the mesh velocity on the particle positions. Once again, this is achieved by relying on the interpolation formula
(see Appendix A). For a uniform mesh, with constant spacing /,, a fast FFT-based solver is employed to solve
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the Poisson streamfunction equation. The overall CPU cost of the velocity computation thus scales as
O(Np + Mlog M), where M is the number of mesh points.

The stochastic spectral expansion of the problem, to be introduced below, makes use of a set of particles
having deterministic location and random strength. As a result, both multipole expansions and particle-mesh
methods can be used for the stochastic velocity computation, by applying the respective scheme to each par-
ticle circulation mode. This feature allows for a straightforward parallelization of the computation of velocity
modes. Note that in particle-mesh schemes the projection coefficients depend on the deterministic particle
locations only; their computation is thus factorized over the stochastic modes. Multipole coefficients combine
both the (deterministic) locations and (stochastic) strengths such that only the construction of the data struc-
ture of the particles distribution can be factorized. For this reason, the use of a particle-mesh method appeared
preferable to us over the multipole expansion approach, and the former is used exclusively in the computations
below.

2.5. Remeshing

A difficulty inherent to the PSE method is the need to introduce new particles to properly account for the
diffusion outside the initial support of w and 6. Furthermore, as the particles are convected, their spatial
distribution can be highly strained and distorted such that they may cease to overlap in some region of
the flow. This calls for a remeshing procedure where the fields are periodically rediscretized (see [8] and ref-
erences therein). This is achieved by considering periodically a new set of particles uniformly distributed on
a grid with uniform spacing v/S covering the current set of particles. The new particle strengths are com-
puted from the interpolation scheme used for the projection of the vorticity on the velocity mesh. This
remeshing introduces a numerical diffusion, inherent to the interpolation procedure, which must be kept
as small as possible. In the computations below, this is achieved by remeshing infrequently. Specifically,
numerical diffusion due to remeshing was found to be negligibly small, and consequently no special means
were needed to reduce it further.

3. Stochastic spectral expansions

In this section, we extend the particle method described in the previous section to uncertain flow condi-
tions using PC expansions. The starting point of PC-based methods is the definition of the stochastic basis
on which the solution is projected. Essential ingredients for the construction of the stochastic basis and the
PC expansion are given in Section 3.1. For more details, the reader may refer to [17] for a general exposi-
tion of the theory of Wiener—Hermite expansions, to [34] for construction of expansion basis for more gen-
eral probability measures, and to [24,25] for wavelet-based decompositions. Once the basis is defined, the
corresponding continuous problem is formulated, together with the PC expansion of the solution. It is
stressed that this development is generic, i.e. it applies to various expansion bases provided the basis is
orthogonal. Only the definition of the stochastic multiplication operator would differ. We then proceed
in Section 3.2 to a straightforward extension of the deterministic particle equations obtained in Section
3.1 and show that it results in a cumbersome problem, which is hardly practical. This first attempt however
clearly indicates which characteristics of the particle discretization are desirable to be conserved in the pro-
cess of PC expansion. With these characteristics in mind, we then propose in Section 3.3 an alternative
expansion of the particle problem that exhibits the desired properties. Finally, we draw a few conclusions
concerning the resulting particle formulation of the uncertain flow problem and its connection with the solu-
tion method of the deterministic case.

3.1. Stochastic basis and PC expansion

We start with the definition of the expansion basis. Let & denote the second-order random vector
&=(¢;---¢y), with independent components, defined on a probability space (2, % ,dp), with value in R",
and prescribed probability law. Without loss of generality, we shall assume that the £;’s are identically distrib-
uted, with a density p(&;). Therefore, the density of & is
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P,:(é) = Hp(éx) (24)

Any well-behaved random quantities « (e.g. second-order one) can be expanded in a convergent Fourier-like
series of the form

o0

a=Y la¥i(9), (25)

k=0

where the ¥,’s are functionals of the random vector ¢ and [a], are the expansion coefficients, or stochastic
modes, of a. For convenience, the functionals ¥, are chosen to be orthogonal (uncorrelated), i.e.

() = [ BT (e 4 = by (26)
Consequently, one has
_ A{a¥y)
la], = <lpi> . (27)

Usually, the ¥ are polynomials in € resulting in the so-called polynomial chaos expansion. In fact, when the &;
are independent, normalized Gaussian variables, the ¥, are multi-dimensional Hermite polynomials. In this
work, we shall consider & uniformly distributed in [—1,1]" with a multi-dimensional Legendre polynomial
expansion [34], p(&;) = 1/2 for ¢, €[—1,1] and 0 otherwise. Adopting the convention consisting in ordering
the polynomial indexes with increasing polynomial order, i.e.

BrIO - 17 T[E[I,N] - éi, lPN#»I - é% - 1/23 ceey (28)
the polynomial expansion of « truncated to order No is
P
(N + No)!
~ ' P+l=——*= 29
a ;[a]k k(f)? + N'NO' ( )
From the indexing convention, we also have the expression of the mean and variance of a:
P
(a) = [aly, ((a—(@)*) =) _[ali (V). (30)

k=1

It is emphasized that knowledge of the expansion coefficients [a]; provides not only the first statistical mo-
ments of @, but a complete characterization of a, since one can compute from (29) the probability law of a,
the density of & being known.

If some data of the problem are uncertain (for instance the initial conditions or some transport properties),
the data will be considered as random quantities with associated probability density functions and correspond-
ing PC expansions. As a result, the flow fields will also be random as the random data appears in the model.
Consequently, the flow variables are also functionals of &. In general, the system (6) becomes

Lt ot .9) = T8 aote ) 4 9 PEEE,
00(x,t, &) ‘ . _ 1 .
SV e 000,18 = s M), )

AY(x,1,8) = —o(x,1,E), u(x,t,&) =VAW(x,tEe),
o(x,0,&) = (VAu(x,0%)) e,
u(x,t,€),w(x,t,&) — 0 as |x| = oo.

The above system has to be solved in R? x [0, 7] x [—1, 1]V, It is assumed that the probabilistic model of the
data is such that the second-order moment of Ra~ "/ 2(&) is finite. It is remarked that (31) involves no differential
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operator in &, a characteristic expressing the independence of deterministic realizations of the flow for differ-
ent realizations of the data. It is also clear that a numerical approximation of (31) will require an efficient dis-
cretization to account for the dependence of the solution on €. By expanding the flow variables using the PC
basis,
o0
[@,0,u,y](x,t, &) = Z , 0, u, ), (x,1)Pi(&), (32)
=0
it is expected that a low polynomial order will be sufficient to properly represent the solution. In other words,
it is expected that the series (32) is quickly convergent such that only a small number P of stochastic modes can
be actually retained in the computation. We now focus on the derivation of a particle approximation of the
stochastic flow.

3.2. Straightforward particle formulation

A straightforward approach to derive a particle formulation of (31) would consist in considering the par-
ticle formulation of the deterministic problem, given by (14)—(17), and then to allow for a dependence of the
variables with £. This appears feasible as (31) has no differential operator in the stochastic dimensions. It
would result in the following system of stochastic ODE:s:

dtht b 2,1 ZT (6, ) A (Xi(t,8), X,(1,8)), (33)
drit,&)  Pr(é) & woo
& VRale) 2o S LK) ~ X N0, 8) = Tt &)+ PrE) Y ST (Kl
= X;(#,8)00,(t,¢) + 0:(t, )], (34)
d@(izt 5 1 ;S‘g Xj<t> 5))[@z(t7 f) - @j(ta 5)]7 (35)
Fi(07€) = CU(X,-(O,&),O,&)S, @1(075) = Q(X,(O,é),O,é)S (36)

A particle representation is thus obtained in which the particles have both random position and strengths. To
derive a weak formulation of this problem, the truncated PC expansions of the particles position and
strengths,

= XL, (&) =D [N, P8, i) [6]74(8), (37)

k=0 k=0 k=0

are introduced into (33)—(36), which are then projected onto the PC basis. This Galerkin projection yields a
system of P+ 1 coupled problems for the stochastic modes. For instance, the equations for the kth mode
of the particles position are:

) d[()i(;-]k _ ;_; > <qu ;[m,q/,y/e (Z[xi]m v, > X)), 'I’) > (38)

j=1 m=0 n=0

We already see from this equation that the approach is cumbersome as the non-linearities of the smoothing
kernel 2#°. make it difficult to obtain a true Galerkin representation. A pseudo-spectral technique was pro-
posed in [22] to find the stochastic modes of #".(X;(&), X;(£)), but this results in a prohibitively expensive
strategy when the number of particles is large. It can be remarked that in the computational strategy for
the deterministic problem discussed above, the velocity kernel is never evaluated (if one excepts the boundary
conditions for i) as the velocity is computed by solving the streamfunction Poisson equation. However, the
particle-mesh strategy cannot be immediately applied to the present formulation as the stochastic positions of
the particles make it difficult to project the vorticity on the mesh; similar difficulties would also arise in the
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interpolation of the velocity modes at random particle positions. Additional hurdles also include the evalua-
tion of the diffusion and buoyancy terms.

Based on the discussion above, it was concluded that an efficient formulation would involve a set of par-
ticles with deterministic positions but stochastic strengths. This would avoid the difficulties above, and further
enable the use of fast particle-mesh techniques.

3.3. Particle discretization of the stochastic flow

Let us go back to the Eulerian stochastic transport equations for the vorticity and heat. Dropping from the
notation the spatial and time dependence of the variables, the conservative form is written as:

LY w@o0) = O no(e) + o T

(3
002 ]
T w(E0(E) = s 80)

For expansions truncated at order No, the weak formulation of the system above is given by the following
evolution equations for the stochastic modes:

a[w Ty P o o[0],,
=0 m=0 . fol,) = =0 ;Cklm([\/%]lv Ol Ox )’ (40)
—*+ IZ Zo CimV - 0,) = ; ; Chim [\/%} 1V2[9]m»
where Cy = (Vi1 V0)/ <‘I’2> is the multiplication tensor. Since by convention ¥y = 1, we have Cior = 1 and
Crom = 0 for k # m; Thus the previous equations can be rewritten as:
v ol = =3 Y- - (o) + 32 3 un [ ] P+ 19, El2).
TV (il = =Y Y- Cua- (o) + Y- Y Cun | ] VL “)
Consequently, we can write
Dx,
Ff - [u]oa (43)
Do), P P . P P ,
== 300 Cun [ 95y = (0l + o) 49 = 32 S Can [ 97, )
(e o (5 + 0ol () dy + 3 S Cu| Z_] [ 2, 9)([0,0) ~ [0l () dy
#3203 CunlP, [ @, =)0, ) + 0], 0)) O (@4
D[0], P P ) P P
o=~ 20 D Cue [ 95y = ) + 0,00 dy =D S o [ 7, )

In the previous equation, we have denoted by

Df _of
D o [u]y - V', (46)
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the particle derivative defined with regard to the mean velocity. The stochastic velocity modes have the integral
representation

| '
3 =5 [ A )il (47)
e
Introducing the smoothed particle approximations of the stochastic vorticity and temperature fields,
Np P Np P
o(x, &) =Y [N P(OL(x = X)), 0(x,8) =) > [0, Pi(&l(x — X)), (48)
=1 =0 =1 k=0
and defining the stochastic velocity modes on particle X; as
P 71 Np .
U&= Y WU, [U] =5 DA (X, X)), (49)
=0 =

the particle approximation of (43)—(45) is given by:

DX,
S (U, (50)
opi=- > 2 > CumS{F (X = X)L, + U, + @ (Ko = X)(VIT, + VT,
p P P Pr
£35S cuns| | 20 - X)), - 1)
j=1 =0 m=0 aj
£ > CunSIP% (X, ~ X)([6)], +[0)],), (51)
j=1 1=0 m=0
Df;]" =2 Z ch,ms{@‘(x, -X)(Ule], +Ul6),)+9 (X X) (V] e, +[Vi]le],)}
£35S cus| | 2= X0~ ©1,) (52

fori=1,...,Np and k=0,..., P. The initial conditions for the above system of coupled ODEs are:
¥ 0(X:(0),0,¢)) (¥:0(X:(0),0,8))

(¥ (¥3) ’
fork=0,...,Pand i=1,...,Np.

Remarks. As seen from (50), the particles are displaced with the mean velocity field. The stochastic modes of
the particle strengths now evolve according to two distinct mechanisms. The first mechanism is the diffusion
operator which couples all of the stochastic modes, unless the Rayleigh and Prandtl numbers are both certain.
In this case, the stochastic modes independently diffuse with all the same diffusion coefficient Pr/v/Ra or
1/v/Ra, for the vorticity and temperature, respectively. The second mechanism corresponds to variation in
the mode strengths, due to the convection by the stochastic velocity field. If the velocity field is certain,
[U)e=0 =0 for all particles, and only the diffusion and buoyancy terms remain in the right-hand side of
(51),(52). Note that [U,]i=o = 0 implies that [I";]i=¢ = 0 as well.

An important remark concerns the cost of the evaluation of the stochastic modes of the particles’ veloc-
ity. Because the particle positions are deterministic, the hybrid mesh-particle method is still practical. The
determination of the projection mesh-points and coefficients for each particle is in fact identical to that of
the deterministic method. As a consequence, the CPU cost of the computation of velocity modes is roughly
(P + 1) times larger than the cost of the deterministic evaluation for the same number of particles (in fact
slightly less as the computation of the projection coefficients is factored on the P+ 1 modes). This CPU
cost is essentially dominated by the resolution of the Poisson streamfunction equations, which are

(53)

’ [@,—],((0) =S
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decoupled. Thus, straightforward parallelization strategies can be envisioned. Similarly, the velocity inter-
polation at the particle centers involves a unique evaluation of the interpolants which are the same for all
the stochastic modes.

Another remark concerns the size of the system of coupled ODEs. For Np particles and P + 1 stochastic
modes, we have to advance in time 2Np positions and 2(P + 1)Np strengths, giving a total of 2(P + 2)Np vari-
ables. The efficiency of the method will thus depend on the ability of the selected basis to represent the uncer-
tainty with a minimal number of stochastic modes. To integrate these ODEs, the deterministic time-stepping
scheme can still be used, thus preserving the whole structure of existing deterministic particles code. Only a the
evaluation of the right-hand side of the ODE:s is altered. The cost of the ODEs’ right-hand side evaluation is
obviously critical for the performance of the method. We have already mentioned that the velocity calcula-
tions likely scales with the number of modes for given number of particles, and can be parallelized, at least
in the particle-mesh approach. At first glance, it appears that the CPU cost of the evaluation of the right-hand
side of the strength ODEs is (P + 1) times greater than for its deterministic counterpart. This is an overly
conservative estimate, because (1) the multiplication tensor is sparse, and (2) since the particle positions are
deterministic many of the integral kernels are identical. In the computations below, we take advantage of this
feature by computing and storing the kernels when the near-neighbors lists are constructed. To further
improve CPU performance, the stochastic products U, U;®,, (Pr/\/Ra)T;, Pr’; and (1/v/Ra)®; are first
computed, in an efficient vectorized way (with inner loop on particle index) before considering the right-hand
side assembly. Doing so, applications with a large number of particles and high-order expansions are possible
even on small platforms, as illustrated in Section 5.

4. Validation

In this section, we present two computational examples of particle simulations with polynomial chaos
expansion. Our objective is to validate the proposed extension of the deterministic particle scheme to stochas-
tic situations. To allow for a detailed analysis of the treatment of the stochastic diffusion and convection
terms, we consider two examples consisting of the purely diffusive evolution of a circular vortex, and of the
purely convective transport of a passive scalar.

4.1. Diffusion of a circular vortex

In this section, we consider the problem of the diffusion of a circular exponential vortex without thermal
effect. The governing equation for the vorticity field is

ow

o +u-Vo = vwW o, (54)
with an initial condition of the form
o exp[—r?/d] _

ol =0) = TPLE 2y, (55)

For this setting, the vortex induces a circular velocity field, with azimuthal component v(r,¢) and no radial
component. The vortex shape is preserved, but due to diffusion the vortex core spreads with time, and so
the velocity field is time dependent. The convective term vanishes, and the diffusion coefficient v can be lumped
with time. Consequently, for uncertain v, the problem corresponds to uncertainty in the core spreading time
scale. We shall consider an uncertain diffusion coefficient of the form:

V(&) =vo+vi& v =0.005 v =w/2, (56)

where ¢ is uniformly distributed on [—1, 1]. Thus the diffusion coefficient has a uniform distribution in the
range [0.0025,0.0075]. The total circulation of the vortex [ dx = 1 is an invariant of the flow, while the total
circulations of the stochastic vorticity modes (k > 0) are all zero, i.e.

/ @], (x,)dx =0, Vtandk > L. (57)
R2
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These identities can also be verified based on the exact expression of the vorticity:
2

1 —r
@e(r1,¢) = n(d + & (&) P Lz+4v(z:)z]’ (58)

or the azimuthal velocity:

e(r,1, &) = zinr (1 ~ &P [d+_4rvz(§)J )

For the particle simulation, the complete set of particle equations is solved, including the convection of the
particles with the mean velocity field and stochastic coupling terms V - ([#],[w],), even though the latter are
not expected to contribute because all stochastic modes of the velocity should be orthogonal to the stochastic
modes of the vorticity gradient. The problem is solved for an initial condition corresponding to d = 10mv,. The
evolution equations are integrated using a third-order Runge-Kutta scheme with time step Az = 0.02. The
polynomial order No =5, so that number of terms in the stochastic polynomial expansion is P+ 1 =6.
The particle approximation uses a smoothing parameter ¢ = 0.05. The mesh for the Poisson solver has a spac-
ing h, = €. Remeshing is performed every 10 time steps; the distance between neighboring particles VS =¢/2
after remeshing.

In Fig. 1, we compare the computed and exact values of the mean and standard deviation of the vorticity as
a function of the distance to the vortex center, r, and at different times, 1 < ¢ < 30. The computed values
reported correspond to the particle approximation on the semi-line y =0, x > 0, while the exact values are
obtained by means of accurate Gauss—Lobatto integrations of the analytic solution (58):

@)= [
1

P(our1,0) = 5 1 09 e = (.00 (60)

1
we(r, 1, &) d¢, (59)
1
1

An excellent agreement is observed for all cases shown in Fig. 1. The plots show that as the mean vorticity field
spreads, its variance increases (up to ¢ =~ 10), followed by a slower decay. The presence of a node point where
the standard deviation of w(r) exhibits a local minimum is clearly visible. This node slowly moves to larger
distance from the vortex center as time progresses.

Fig. 2 compares computed and exact radial profiles of the mean and standard deviation of the azimuthal
velocity. Again, an excellent agreement between computed and exact solutions is observed. The plots show
that at any fixed r, the mean velocity decays monotonically with time. On the contrary, for given r > 0 there
is a first period of time where the velocity standard deviation increases, followed by a second stage where it
decays as one may have expected.

Fig. 3 shows the evolution of the first five stochastic modes [w]i(r, ) for 0 < r < 2. Also shown for compar-
ison are profile of the mean mode [w]y. Mode 1 expresses the linear departure from the mean solution as the
first Legendre polynomial ¥ = £. The negative values of [w]; at early times in the neighborhood of the vortex
center express the fact that when v (i.e. &) increases the diffusion becomes more active and so the vorticity in
this region experiences lower values. At larger distance from the vortex center, an increase in the diffusion
coefficient yields on the contrary larger vorticity values, and so [w]; > 0 for larger r. It is interesting to note
that as time increases, first [w]; quickly increases in magnitude for r = 0 before leveling-off for 10 < ¢ < 30,
and then undergoes a slow decay. It is noted that as time increases, the support of [w]; becomes broader.
Higher order stochastic modes also exhibit similar three-stages dynamics (initial increase, leveling-off and slow
decay) and broader support as time increases. For higher modes, however, the initial increase is delayed. Fur-
thermore, one observes that [@w]; at r = 0 is negative for k odd and positive for k even. Finally, one can appre-
ciate the convergence of the stochastic polynomial expansion by noticing the decay in the magnitudes of [w];
as k increases. In fact, a computation with lower order No = 3 revealed no significant differences on the result-
ing mean and standard deviation fields as reported in Figs. 1 and 2. In this simulation, the number of particles
increases (due to vorticity spreading) from initially Np = 8192 to Np = 38,720 when the computations were
stopped. The CPU time was roughly 3 h on a desktop PC.
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Fig. 1. Comparison of numerical (lines) and exact (symbols) values of the mean value of the vorticity {w(r, 7)) (top row) and corresponding
standard deviations o(w(r,t)) (bottom row). Results are presented at time ¢ =1, 2, 3, 4, 5 (left) and ¢ = 10, 15, 20, 25 and 30 (right).
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Fig. 2. Radial profiles of numerical (lines) and exact (symbols) values of the mean azimuthal velocity (v(r, 7)) (top row) and its standard
deviation a(uv(r,)) (bottom row) at corresponding times. Profiles are plotted at time ¢t =1, 2, 3, 4, 5 (left) and 7 = 10, 15, 20, 25 and 30
(right).
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Fig. 3. Radial profiles of the vorticity modes [w]i(r,?) plotted at time =1, 2, 3, 4, 5, 10, 15, 20, 25, 30.

4.2. Convection of a passive scalar

In this section, a second test problem is considered which consists of the convection of a passive scalar. The
stochastic problem is specified in terms of the transport equation:

dc
E—Fu-Vc—O, (61)
with given, uncertain, divergence-free velocity field # and the deterministic initial condition:
exp[—r*/d
c(x,O)z%, r=|x - cf. (62)
We set ¢y =¢,, d=0.05 and
u(x) = —x Ne (1 +0.0758). (63)

Again, the random variable ¢ is assumed to be uniformly distributed over [—1, 1], and so the convective field
corresponds to solid rotation about the origin with an uncertain rotational speed of 1 + 0.075 round(s) per 2n
units of time. The center of the concentration field, ¢, evolves according to:
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e(t, &) = cos[n/2 4 (1 + 0.075&)t]e, + sin[rn/2 4 (1 + 0.075&)]e,, (64)

and the exact scalar value may be expressed as:

2
ce(x,t, é) 21d exp [W]

(65)
For the inputs above, at 1 = k(2m) the center of the scalar distribution is uniformly distributed over an arc with
length 0.015(2m)k ~ 1k, while the radius of the scalar distribution is estimated as ~ 2v/d ~ 0.5. These estimates
show that the uncertain velocity field induces in just one revolution an uncertainty in the scalar field location
which is of the same order as the diameter of the distribution of ¢. Thus, the present problem constitutes a
challenging test, as high-order expansions are needed in order to represent solution at even moderate times.
Note that these challenges are inherent to the stochastic nature of the problem, and are not associated with
the selected Lagrangian discretization scheme. Specifically, high-order PC expansions would also be needed
if an Eulerian discretization scheme is used. Note, however, that in the latter case the numerical solution
would face additional difficulties associated with the transport of a non-diffusiving scalar, and that these dif-
ficulties would also arise in a deterministic setting. To address these difficulties, Eulerian approaches rely on
elaborate discretizations (using for instance flux limiters), but extension of these discretizations to situations
involving random velocity fields is not immediate. Particle methods, on the other hand, are well-suited for con-
vection-dominated problems. One of the objectives of the present tests is to verify that this remains the case
when the convective field is uncertain.

The problem is first solved for a particle discretization with e = 0.025, a third-order Runge-Kutta scheme
with At = 2r/400, and large polynomial order No = 20. Remeshing is applied every 10 iterations, with spacing
VS = €/2. The computed means and standard deviations of the scalar fields after 1 and 2 revolutions, together
with the corresponding exact solutions, are plotted in Fig. 4. The agreement between particle and exact solu-
tions is again excellent.

We present in Fig. 5 the time-evolution of the spectrum FE,(k), defined according to:

Np

Exk) = Y_[C; (66)

where C; is the scalar strength of the ith particle. E, essentially measures the energy in the individual scalar
modes. One observes that the energy of mode zero decays, which reflects increasing uncertainty in the location
where the scalar is concentrated. The energies of the higher modes k > 0 on the contrary steadily increase. It is
however observed that the spectra monotonically decrease as k increases, denoting the convergence of the
polynomial expansion. However, as time progresses, the decay of the spectrum with k& becomes slower, indi-
cating that the number of stochastic modes needed to suitably represent the solution increases with time.
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Fig. 4. Mean (top row) and standard deviation (bottom row) of the scalar field after 1 revolution (left) and 2 revolutions (right). Plotted
are the particle solution (No = 20) and the exact solution. Contour levels start at 4/2 with fixed increments 4, where 4 =0.2.
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Fig. 5. Spectrum Ej(k), as defined in (66), of the particle solution for No = 20. Curves are generated at every quarter revolution.
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particles Np ~ 39,500, whereas only 15,000 particles were present at the start of the computations.
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We now focus on the conservation of first invariants in the numerical solution. Since the initial condition is
deterministic, we have for all time

10)=Y"[Cly=1, I(k)=>[Cl,=0, k=>1. (67)

The proposed method being conservative at the discrete level, it is expected that these invariants are also con-
served in the computations. However, due to remeshing, this is not necessarily the case. Specifically, in order to
avoid an unreasonable increase in the number of particles, only particles with strengths exceeding a predeter-
mined threshold are retained after remeshing, while others are discarded. As a result, the invariants are not ex-
actly conserved. The error that is incurred depends on the threshold value used to decide whether particles are
kept or omitted. In the present computation, this criterion consists of discarding particles whose strength satisfy
[[Cill < 1078 for all k. Fig. 6 shows the evolution |/(k)| as a function of the number of revolutions for even modes,
k = 2. It is observed that the invariants I(k > 0) do in fact vary with time. Similar observation is made for the
odd modes, which however have smaller magnitudes. However, the conservation “errors’ associated with the
first invariants are small, particularly compared to the energies E,»(k), and consequently deemed acceptable.
Thus, further refinement of the remeshing procedure was not attempted. Note that due to the uncertainty in
the convective field, the domain covered by the particles must extend beyond the support of a single realization
(or in other words the support of the initial distribution). This is achieved during remeshing, specifically through
the introduction of additional particles around the boundaries of the prevailing particle distribution. As is the
case for particle removal, the introduction of new particles depend on the selected tolerance. Numerical tests
have shown that conservation of the invariants considered above improves by lowering the tolerance level. How-
ever, this improvement comes at the cost of a significant increase in the number of particles and with only small
improvement of the statistics, as more resources are added in regions where the scalar modes are very small. This
is illustrated in Fig. 6, which simultaneously depicts the particle distribution and contours of the variance in the
scalar field. In particular, the figure indicates that the region where significant variance occurs is contained well
within the region covered by the particles, and thus the addition of new particles is beyond the point of dimin-
ishing returns. These observations also justify the selection of the tolerance value.

In another series of numerical tests, the order of the PC expansion was progressively decreased while keep-
ing constant the parameters of the particle discretiz