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Abstract

A new mesh-particle scheme is constructed for uncertainty propagation in vortical flow. The scheme is based on the
incorporation of polynomial chaos (PC) expansions into a Lagrangian particle approximation of the Navier–Stokes equa-
tions. The main idea of the method is to use a unique set of particles to transport the stochastic modes of the solution. The
particles are transported by the mean velocity field, while their stochastic strengths are updated to account for diffusive and
convective effects induced by the coupling between stochastic modes. An integral treatment is used for the evaluation of the
coupled stochastic terms, following the framework of the particle strength exchange (PSE) methods, which yields a con-
servative algorithm. It is also shown that it is possible to apply solution algorithms used in deterministic setting, including
particle-mesh techniques and particle remeshing. Thus, the method combines the advantages of particles discretizations
with the efficiency of PC representations. Validation of the method on uncertain diffusion and convection problems is first
performed. An example is then presented of natural convection of a hot patch of fluid in infinite domain, and the compu-
tations are used to illustrate the effectiveness of the approach for both large number of particles and high-order PC
expansions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Simulation of real fluid flows is often challenged by incomplete knowledge of model parameters,
including initial conditions, boundary conditions, external forcing, physical properties of the fluid
and its constituents. In these situations, one may consider unknown model data as random or
uncertain quantities. Thus, it becomes essential to quantify the impact of these uncertainties on the
numerical predictions, for instance generating a statistical characterization that can be used to
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establish confidence measures, estimate limits of predictability, and/or support model-based decision
analysis.

Uncertainty propagation and quantification in fluid flows has recently received considerable attention,
particularly through the development of efficient spectral techniques based on polynomial chaos (PC) expan-
sions. PC based methods were originally developed for engineering problems in solid mechanics [17] and
subsequently applied to a large variety of problems, including flow through porous media (e.g. [16]), thermal
problems (e.g. [18,27,26,24,25]) and reacting systems (e.g. [10,29]). PC expansions consist in the representa-
tion of the uncertain data as functionals of a finite set of independent random variables with prescribed
densities, the uncertainty germ, and in expanding the dependence of the model solution using a suitable
basis of uncorrelated functionals of the germs. A classical choice for the basis is a set of polynomials in
the germ. If the germ has zero-mean normalized Gaussian components, one obtains the Wiener–Hermite
PC basis [33,3], which is formed of generalized Hermite polynomials. Other density types of the germ com-
ponents result in various families of orthogonal polynomials or mixtures of orthogonal polynomials [34].
Piecewise polynomials [32] and multi-wavelets [24,25] were also recently proposed as elements of the basis,
as these representations are better suited to account for complex or discontinuous dependencies of the
model with regard to the uncertain data. A case-in-point is the occurrence of bifurcation points (or surfaces)
within the range of uncertain parameter(s). The first applications of PC methods to Navier–Stokes equa-
tions appeared in [23,27,35]. A review of recent works using PC expansions in Navier–Stokes computations
can be found in [19]. To our knowledge, PC expansions have so far been applied to Eulerian fluid flow mod-
els, including finite difference, finite element, spectral element, and finite volume approximations. The prin-
cipal objective of this work is to explore the application of PC methods in conjunction with Lagrangian
particle approximations of the Navier–Stokes equations. As discussed in the extensive exposition of Cottet
and Koumoutsakos [8], particle methods have long history [31,5,21], are theoretically well-grounded [28,9]
with available convergence results [1,4,12,7]. Their advantages include the flexibility to treat complex and
moving boundary problems, the ability to tackle in a natural fashion problems in infinite domains, and
the ability to deal with problem with low or even vanishing diffusivity. This last feature is particularly
attractive as stabilized Eulerian deterministic convection schemes typically rely on upwinding, which are dif-
ficult to extend to a stochastic setting, especially when the velocity has large uncertainty. In contrast,
Lagrangian particle methods handle convection in a stable and non-diffusive way. This aspect will conse-
quently be a focus of the present study.

The paper is organized as follows. Section 2 summarizes the formulation of a deterministic particle method,
whose extension to stochastic problems is later carried out in Section 3. The extension strategy is based on the
use of a unique set of particles to transport all the uncertain modes of the solution. In Section 4, a validation of
the proposed method is presented by considering two simple problems: the purely diffusive evolution of an
uncertain Gaussian vortex, and the non-diffusive convection of a passive scalar by an uncertain velocity field.
The validation is performed by comparison with exact solutions. To demonstrate the effectiveness of the pro-
posed technique, the simulation of the natural convection of a localized patch of heated fluid in an infinite
domain is considered in Section 5. Major conclusions are summarized in Section 6, which also provides a brief
discussion of further improvement and generalization.

2. Deterministic particle method

In this section, we detail the deterministic particle formulation of the problem considered, and discuss accel-
eration techniques and implementation issues. The deterministic equations of the flow are first presented in
Section 2.1. In Section 2.2, the particle approximation of the deterministic problem is outlined, using integral
representations of the diffusion and buoyancy terms. The derivation of these integral kernels is detailed in Sec-
tion 2.3. Diffusion is accounted for using the particle strength exchange (PSE) method of Degond and Mas-
Gallic [12], which provides a suitable approach for extending the scheme to the stochastic setting. Buoyancy
terms are similarly discretized in a conservative way following the recent work of Eldredge et al. [15]. Section
2.4 discusses the implementation of a particle-mesh method devised to reduce the computational cost of the
particle velocity evaluations. Finally, a remeshing procedure for the deterministic problem is briefly discussed
in Section 2.5.
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2.1. Two-dimensional Boussinesq equations

In the Boussinesq limit, the natural convection in an infinite domain of a viscous Newtonian fluid is gov-
erned by the incompressible Navier–Stokes equations and the energy conservation equations. For 2D flow,
these equations are:
ou

ot
þ u � $u ¼ �$p þ Prffiffiffiffiffiffi

Ra
p Duþ Prhey ;

oh
ot
þ u � $h ¼ 1ffiffiffiffiffiffi

Ra
p Dh;

$ � u ¼ 0;

ð1Þ
where u(x, t) is the normalized velocity, p(x, t) is the normalized pressure, and h(x, t) is the normalized temper-
ature. h is defined according to:
h ¼ T � T ref

DT ref

; ð2Þ
where Tref and DTref are the characteristic temperature and temperature difference, respectively. The Bous-
sinesq limit of the Navier–Stokes equations is valid for DTref/Tref� 1, i.e. for small characteristic deviations
from the reference of the temperature. Variables are normalized with respect to the appropriate combination
of reference length Lc, velocity V, time s ” Lc/V, density q and pressure Pc = qV2. The normalization leads to
the usual definitions of Prandtl and Rayleigh numbers, respectively Pr = lCp/j and Ra ¼ qgbDT refL3

c=ðljÞ,
where b is the coefficient of thermal expansion, g is gravitational acceleration, l and j are the viscosity and
heat conductivity, and Cp the heat capacity of the fluid.

The Boussinesq equations need to be complemented with initial conditions u(x, 0), h(x, 0), as well as bound-
ary conditions. We shall consider the following boundary conditions:
uðx; tÞ ¼ 0; hðx; tÞ ¼ 0 as jxj ! 1: ð3Þ

Defining the vorticity x ¼ $ ^ u ¼ xez, and taking the curl of the momentum equation we obtain:
ox
ot
þ $ � ðuxÞ ¼ Prffiffiffiffiffiffi

Ra
p Dxþ Pr

oh
ox
; ð4Þ
with initial conditions xðx; 0Þ ¼ ð$ ^ uðx; 0ÞÞ � ez and boundary condition x(x,t) = 0 as |x|!1. Next, we
introduce the stream function w(x, t), defined by:
u ¼ $ ^ ðwezÞ; Dw ¼ �x: ð5Þ

The normalized governing equations to be solved are then given by:
ox
ot
þ $ � ðuxÞ ¼ Prffiffiffiffiffiffi

Ra
p Dxþ Pr

oh
ox
;

oh
ot
þ $ � ðuhÞ ¼ 1ffiffiffiffiffiffi

Ra
p Dh;

Dw ¼ �x;

u ¼ $ ^ ðwezÞ;
xðx; 0Þ ¼ ð$ ^ uðx; 0ÞÞ � ez

u;x! 0 as jxj ! 1:

ð6Þ
2.2. Particle method

The principle of particle methods is to discretize the fluid domain into Lagrangian elements (or particles),
which carry vorticity and temperature. The position xp of a particle obeys:
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dxp

dt
¼ uðxp; tÞ: ð7Þ
The velocity and vorticity fields are related through the Biot–Savart integral:
u ¼ �1

2p
KHx ¼ �1

2p

Z
R2

Kðx; yÞ ^ x dy; ð8Þ
with the 2D kernel given by:
Kðx; yÞ ¼ ðx� yÞ=jx� yj2:
As discussed further below, the Laplacian and gradient operators can be approximated by integral conserva-
tive operators of the form:
Dq �
Z

R2

Lðx� yÞ½qðyÞ � qðxÞ� dy;

oq
ox
�
Z

R2

Gxðx� yÞ½qðyÞ þ qðxÞ� dy:

ð9Þ
With these representations, the transport equations for the vorticity and heat can be recast as:
dxp

dt
¼ �1

2p

Z
R2

Kðxp; yÞ ^ xðyÞ dy; ð10Þ

dx
dt
¼ Prffiffiffiffiffiffi

Ra
p

Z
R2

Lðxp � yÞ xðyÞ � xðxpÞ
� �

dyþ Pr
Z

R2

Gxðxp � yÞ½hðyÞ þ hðxpÞ� dy; ð11Þ

dh
dt
¼ 1ffiffiffiffiffiffi

Ra
p

Z
R2

Lðxp � yÞ½hðyÞ � hðxpÞ� dy; ð12Þ
where d/dt is the Lagrangian (material) derivative.
The particle discretization relies on a set of Np Lagrangian elements, with associated position Xi(t), circu-

lation Ci(t) and heat Hi(t). We denote by � the core radius of the particles, and introduce the smoothing func-
tion f�(x) such that f�(x)! d(x) as �! 0, where d is the Dirac delta function. The smoothed approximation of
the vorticity and temperature fields are
xðx; tÞ ¼
XNp

i¼1

CiðtÞf�ðx� X iðtÞÞ; hðx; tÞ ¼
XNp

i¼1

HiðtÞf�ðx� X iðtÞÞ: ð13Þ
Denoting K� the regularized version of K, the evolution equations for the particle positions and strengths
are:
dX i

dt
¼ �1

2p

XNp

j¼1

CjK�ðX i;X jÞ; ð14Þ

dCi

dt
¼ Prffiffiffiffiffiffi

Ra
p

XNp

j¼1

LðX i � X jÞS½Cj � Ci� þ Pr
XNp

j¼1

GxðX i � X jÞS½Hj þHi�; ð15Þ

dHi

dt
¼ 1ffiffiffiffiffiffi

Ra
p

XNp

j¼1

LðX i � X jÞS½Hj �Hi�: ð16Þ
In the equations above, we used S to denote the volume of the particles, assumed to be the same for all par-
ticles. It is seen that the particles move with the local fluid velocity, while their vorticity and temperature
evolve due to diffusion and buoyancy. The initial conditions for the discrete system equations are:
Cið0Þ � xðX ið0Þ; 0ÞS; Hið0Þ � hðX ið0Þ; 0ÞS: ð17Þ

These initial conditions, together with (14)–(16), constitute a system of ODEs that approximates the contin-
uous system in (6).
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2.3. Diffusion and buoyancy terms

As mentioned above, integral representations of the diffusion operator and buoyancy terms are used in the
computations. Before outlining these representations, a brief discussion is provided of the rationale behind the
present approach. For brevity, the discussion focuses on the diffusion term only. One first notes that the rep-
resentation announced in (15), (16) is not the only means of dealing with diffusion in the context of particle
methods. Alternative treatments include random walk and diffusion velocity methods.

In the random walk method [5], diffusion is simulated using random displacement of the particles having a
zero mean, and variance proportional to the diffusivity and time step. The strength of the particles, on the
other hand, remains unchanged. This approach offers several attractive features, including ease of implemen-
tation, the obvious conservative character of the algorithm, and the independence of the random displace-
ments so that particle–particle interactions do not intervene. Unfortunately, extension of the random walk
algorithm to stochastic problems tackled using PC representations is generally difficult. An example where
severe difficulties arise concerns the case of an uncertain diffusivity, because in this case the variance of the
random displacements would be uncertain.

In the diffusion velocity method [13,30,2], the diffusion term is recast as a transport term, and diffusion is
consequently accounted for by moving the particles using the sum of local convection and diffusion velocities.
The particle strength is not affected, and so the method is conservative. Unfortunately, the diffusion velocity
method does not appear to be generally well-suited for extension to the uncertain case. As for random walk,
uncertainty in the diffusion velocity makes it difficult to devise a particle transport scheme. This difficulty is
further compounded by the non-linearities appearing in the definition of the diffusion velocity. Being stochas-
tic, the diffusion velocity must be represented in terms of PC expansions, which adds complexity and may
require significant computational overhead.

In order to avoid the difficulties outlined above, the PSE method is adopted for the purpose of modeling
diffusion. As further discussed below, PSE amounts to an update of the particle strengths but not of their posi-
tions. As further discussed in Section 3, this feature provides a distinct advantage in a stochastic setting, as it
makes possible to define representations involving a single set of particles. The PSE method relies on an inte-
gral approximation of the Laplacian, which rely on the definition of a radially-symmetric smoothing function,
g�, defined according to:
g�ðxÞ �
1

�2
gðjxj=�Þ;
where g is a radial function and � is the core parameter. Following [12], g is assumed to satisfy the moment
conditions:
Z

R2

x2gðxÞ dx ¼
Z

R2

y2gðxÞ ¼ 2;Z
R2

xa1 ya2gðxÞ dx ¼ 0; 1 6 a1 þ a2 6 mþ 1; a1; a2 6¼ 2:
Based on these definitions, it can be shown [12] that the Laplacian of a generic scalar field c can be approx-
imated by:
Dc ¼ 1

�2
ðg�Hc� cÞ þ Oð�mÞ; ð18Þ
where w denotes the convolution operator.
Applying the approximation above to the vorticity and temperature fields associated with the correspond-

ing smoothed particle representations leads to the following definition of the diffusion kernel,
Lðx� yÞ ¼ 1

�2
g�ðx� yÞ; ð19Þ
which is used in the evolution equations for the particle strengths (15) and (16). Note that due to the symmetry
of the kernel, the diffusion treatment in (15) and (16) is conservative.
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The generalization of the integral approximation of the diffusion operator to derivatives of arbitrary order
was recently conducted by Eldredge et al. [15]. They provide the following integral approximation of the deriv-
ative operator:
Dbf � ojbj

oxb1
1 � � � oxbd

d

f ðxÞ � 1

�jbj

Z
½f ðyÞ þ ð�1Þjbjþ1f ðxÞ�gðbÞ� ðx� yÞ dy; ð20Þ
for positive d-dimensional multi-index b, jbj ¼
Pd

i¼1bi. They derived constraints on the moments of g(b) to
achieve approximation of arbitrary order, and proposed a set of 2D kernels, for both first derivatives and
the Laplacian, with accuracy up to eighth order. In this work, we use the second-order kernel [15]:
gðxÞ ¼ 4

p
exp½�jxj2�: ð21Þ
Applying the integral approximation of o/ox to the particle representation leads to:
GxðX i;X jÞ ¼
1

�
gðxÞ� ðX i � X jÞ; ð22Þ
where
gðxÞðxÞ � � 2x
p

exp½�jxj2�:
The summations in (15) and (16) suggest that the complexity of the evaluation of the integral diffusion and
buoyancy terms are OðNp2Þ. However, the kernels have fast decay with x � y, and so the quadrature can in
fact be truncated to particles in a finite neighborhood of the local evaluation point. Specifically, interactions
between particles separated by a distance greater than 4� are neglected in the computations. This results in
significant reduction of the CPU cost by keeping track of the list of interacting particles, which allows discret-
izations using a large number of particles.

2.4. Acceleration of velocity computation

The computation of the velocity for all the particles using (14) requires OðNp2Þ operations. For a large num-
ber of particles, the resulting CPU cost is prohibitive. Consequently, fast methods have been proposed to
speed-up the evaluation of particles velocity. These include hybrid, or particle-mesh, methods and fast multi-
pole methods.

The multipole methods are based on the idea that one can globally approximate the velocity induced by a
cluster of particles, provided that the observation point is located far enough from the cluster. This is usually
achieved through multipole expansions, using a hierarchical data structure of the particles distribution.
Depending on their construction, the multipole techniques exhibit theoretical computational costs scaling
as OðNpÞ or OðNp log NpÞ.

The hybrid methods rely on a mesh to compute the velocity field by solving a Poisson’s equation for the
streamfunction [6]. The procedure involves three steps: the projection step, the resolution of the Poisson’s
equation and the interpolation step. In the projection step, a mesh covering the particles is constructed and
the values of the vorticity field are estimated at the mesh points using a projection operator (see Appendix
A). The Poisson equation Dw = �x is then solved on the mesh. We rely on Dirichlet boundary conditions that
are obtained from the integral representation of the streamfunction:
wðxÞ ¼
Z

R2

Hðx; yÞxðyÞ dy �
XNp

j¼1

CjH�ðx;X jÞ: ð23Þ
Once the streamfunction is obtained, numerical differentiation is used to determine the velocity at the mesh
points. Second-order centered differences are used for this purpose. The final step consists in interpolating
the mesh velocity on the particle positions. Once again, this is achieved by relying on the interpolation formula
(see Appendix A). For a uniform mesh, with constant spacing hg, a fast FFT-based solver is employed to solve
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the Poisson streamfunction equation. The overall CPU cost of the velocity computation thus scales as
OðNp þM log MÞ, where M is the number of mesh points.

The stochastic spectral expansion of the problem, to be introduced below, makes use of a set of particles
having deterministic location and random strength. As a result, both multipole expansions and particle-mesh
methods can be used for the stochastic velocity computation, by applying the respective scheme to each par-
ticle circulation mode. This feature allows for a straightforward parallelization of the computation of velocity
modes. Note that in particle-mesh schemes the projection coefficients depend on the deterministic particle
locations only; their computation is thus factorized over the stochastic modes. Multipole coefficients combine
both the (deterministic) locations and (stochastic) strengths such that only the construction of the data struc-
ture of the particles distribution can be factorized. For this reason, the use of a particle-mesh method appeared
preferable to us over the multipole expansion approach, and the former is used exclusively in the computations
below.

2.5. Remeshing

A difficulty inherent to the PSE method is the need to introduce new particles to properly account for the
diffusion outside the initial support of x and h. Furthermore, as the particles are convected, their spatial
distribution can be highly strained and distorted such that they may cease to overlap in some region of
the flow. This calls for a remeshing procedure where the fields are periodically rediscretized (see [8] and ref-
erences therein). This is achieved by considering periodically a new set of particles uniformly distributed on
a grid with uniform spacing

ffiffiffi
S
p

covering the current set of particles. The new particle strengths are com-
puted from the interpolation scheme used for the projection of the vorticity on the velocity mesh. This
remeshing introduces a numerical diffusion, inherent to the interpolation procedure, which must be kept
as small as possible. In the computations below, this is achieved by remeshing infrequently. Specifically,
numerical diffusion due to remeshing was found to be negligibly small, and consequently no special means
were needed to reduce it further.

3. Stochastic spectral expansions

In this section, we extend the particle method described in the previous section to uncertain flow condi-
tions using PC expansions. The starting point of PC-based methods is the definition of the stochastic basis
on which the solution is projected. Essential ingredients for the construction of the stochastic basis and the
PC expansion are given in Section 3.1. For more details, the reader may refer to [17] for a general exposi-
tion of the theory of Wiener–Hermite expansions, to [34] for construction of expansion basis for more gen-
eral probability measures, and to [24,25] for wavelet-based decompositions. Once the basis is defined, the
corresponding continuous problem is formulated, together with the PC expansion of the solution. It is
stressed that this development is generic, i.e. it applies to various expansion bases provided the basis is
orthogonal. Only the definition of the stochastic multiplication operator would differ. We then proceed
in Section 3.2 to a straightforward extension of the deterministic particle equations obtained in Section
3.1 and show that it results in a cumbersome problem, which is hardly practical. This first attempt however
clearly indicates which characteristics of the particle discretization are desirable to be conserved in the pro-
cess of PC expansion. With these characteristics in mind, we then propose in Section 3.3 an alternative
expansion of the particle problem that exhibits the desired properties. Finally, we draw a few conclusions
concerning the resulting particle formulation of the uncertain flow problem and its connection with the solu-
tion method of the deterministic case.

3.1. Stochastic basis and PC expansion

We start with the definition of the expansion basis. Let n denote the second-order random vector
n = (n1� � �nN), with independent components, defined on a probability space ðX;F; dpÞ, with value in RN ,
and prescribed probability law. Without loss of generality, we shall assume that the ni’s are identically distrib-
uted, with a density p(ni). Therefore, the density of n is
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pnðnÞ ¼
YN
i¼1

pðniÞ: ð24Þ
Any well-behaved random quantities a (e.g. second-order one) can be expanded in a convergent Fourier-like
series of the form
a ¼
X1
k¼0

½a�kWkðnÞ; ð25Þ
where the Wk’s are functionals of the random vector n and [a]k are the expansion coefficients, or stochastic
modes, of a. For convenience, the functionals Wk are chosen to be orthogonal (uncorrelated), i.e.
hWiWji ¼
Z

RN
WiðnÞWjðnÞpðnÞ dn ¼ dijhW2

i i: ð26Þ
Consequently, one has
½a�k ¼
haWki
hW2

ki
: ð27Þ
Usually, the Wk are polynomials in n resulting in the so-called polynomial chaos expansion. In fact, when the ni

are independent, normalized Gaussian variables, the Wk are multi-dimensional Hermite polynomials. In this
work, we shall consider n uniformly distributed in [�1,1]N with a multi-dimensional Legendre polynomial
expansion [34], p(ni) = 1/2 for ni 2 [�1,1] and 0 otherwise. Adopting the convention consisting in ordering
the polynomial indexes with increasing polynomial order, i.e.
W0 ¼ 1; Wi2½1;N � ¼ ni; WNþ1 ¼ n2
1 � 1=2; . . . ; ð28Þ
the polynomial expansion of a truncated to order No is
a �
XP

k¼0

½a�kWkðnÞ; P þ 1 ¼ ðN þ NoÞ!
N !No!

: ð29Þ
From the indexing convention, we also have the expression of the mean and variance of a:
hai ¼ ½a�0; hða� haiÞ2i �
XP

k¼1

½a�2khW2
ki: ð30Þ
It is emphasized that knowledge of the expansion coefficients [a]k provides not only the first statistical mo-
ments of a, but a complete characterization of a, since one can compute from (29) the probability law of a,
the density of n being known.

If some data of the problem are uncertain (for instance the initial conditions or some transport properties),
the data will be considered as random quantities with associated probability density functions and correspond-
ing PC expansions. As a result, the flow fields will also be random as the random data appears in the model.
Consequently, the flow variables are also functionals of n. In general, the system (6) becomes
oxðx; t; nÞ
ot

þ $ � ðuðx; t; nÞxðx; t; nÞÞ ¼ PrðnÞffiffiffiffiffiffiffiffiffiffiffiffi
RaðnÞ

p Dxðx; t; nÞ þ PrðnÞ ohðx; t; nÞ
ox

;

ohðx; t; nÞ
ot

þ $ � ðuðx; t; nÞhðx; t; nÞÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
RaðnÞ

p Dhðx; t; nÞ;

Dwðx; t; nÞ ¼ �xðx; t; nÞ; uðx; t; nÞ ¼ $ ^ ðwðx; t; nÞezÞ;
xðx; 0; nÞ ¼ ð$ ^ uðx; 0; nÞÞ � ez;

uðx; t; nÞ;xðx; t; nÞ ! 0 as jxj ! 1:

ð31Þ
The above system has to be solved in R2 � ½0; T � � ½�1; 1�N . It is assumed that the probabilistic model of the
data is such that the second-order moment of Ra�1/2(n) is finite. It is remarked that (31) involves no differential
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operator in n, a characteristic expressing the independence of deterministic realizations of the flow for differ-
ent realizations of the data. It is also clear that a numerical approximation of (31) will require an efficient dis-
cretization to account for the dependence of the solution on n. By expanding the flow variables using the PC
basis,
½x; h; u;w�ðx; t; nÞ ¼
X1
k¼0

½x; h; u;w�kðx; tÞWkðnÞ; ð32Þ
it is expected that a low polynomial order will be sufficient to properly represent the solution. In other words,
it is expected that the series (32) is quickly convergent such that only a small number P of stochastic modes can
be actually retained in the computation. We now focus on the derivation of a particle approximation of the
stochastic flow.

3.2. Straightforward particle formulation

A straightforward approach to derive a particle formulation of (31) would consist in considering the par-
ticle formulation of the deterministic problem, given by (14)–(17), and then to allow for a dependence of the
variables with n. This appears feasible as (31) has no differential operator in the stochastic dimensions. It
would result in the following system of stochastic ODEs:
dX iðt; nÞ
dt

¼ �1

2p

XNp

j¼1

Cjðt; nÞK�ðX iðt; nÞ;X jðt; nÞÞ; ð33Þ

dCiðt; nÞ
dt

¼ PrðnÞffiffiffiffiffiffi
Ra
p
ðnÞ

XNp

j¼1

SLðX iðt; nÞ � X jðt; nÞÞ½Cjðt; nÞ � Ciðt; nÞ� þ PrðnÞ
XNp

j¼1

SGxðX iðt; nÞ

� X jðt; nÞÞ½Hjðt; nÞ þHiðt; nÞ�; ð34Þ

dHiðt; nÞ
dt

¼ 1ffiffiffiffiffiffi
Ra
p
ðnÞ

XNp

j¼1

SLðX iðt; nÞ � X jðt; nÞÞ½Hiðt; nÞ �Hjðt; nÞ�; ð35Þ

Cið0; nÞ ¼ xðX ið0; nÞ; 0; nÞS; Hið0; nÞ ¼ hðX ið0; nÞ; 0; nÞS: ð36Þ
A particle representation is thus obtained in which the particles have both random position and strengths. To
derive a weak formulation of this problem, the truncated PC expansions of the particles position and
strengths,
X iðnÞ ¼
XP

k¼0

½X i�kWkðnÞ; CiðnÞ ¼
XP

k¼0

½Ci�kWkðnÞ; HiðnÞ
XP

k¼0

½Hi�kWkðnÞ; ð37Þ
are introduced into (33)–(36), which are then projected onto the PC basis. This Galerkin projection yields a
system of P + 1 coupled problems for the stochastic modes. For instance, the equations for the kth mode
of the particles position are:
hW2
ki

d½X i�k
dt
¼ �1

2p

XNp

j¼1

Wk

XP

l¼0

½Cj�lWlK�

XP

m¼0

½X i�mWm;
XP

n¼0

½X j�nWn

 !* +
: ð38Þ
We already see from this equation that the approach is cumbersome as the non-linearities of the smoothing
kernel K� make it difficult to obtain a true Galerkin representation. A pseudo-spectral technique was pro-
posed in [22] to find the stochastic modes of K�ðX iðnÞ;X jðnÞÞ, but this results in a prohibitively expensive
strategy when the number of particles is large. It can be remarked that in the computational strategy for
the deterministic problem discussed above, the velocity kernel is never evaluated (if one excepts the boundary
conditions for w) as the velocity is computed by solving the streamfunction Poisson equation. However, the
particle-mesh strategy cannot be immediately applied to the present formulation as the stochastic positions of
the particles make it difficult to project the vorticity on the mesh; similar difficulties would also arise in the
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interpolation of the velocity modes at random particle positions. Additional hurdles also include the evalua-
tion of the diffusion and buoyancy terms.

Based on the discussion above, it was concluded that an efficient formulation would involve a set of par-
ticles with deterministic positions but stochastic strengths. This would avoid the difficulties above, and further
enable the use of fast particle-mesh techniques.

3.3. Particle discretization of the stochastic flow

Let us go back to the Eulerian stochastic transport equations for the vorticity and heat. Dropping from the
notation the spatial and time dependence of the variables, the conservative form is written as:
oxðnÞ
ot
þ $ � ðuðnÞxðnÞÞ ¼ PrðnÞffiffiffiffiffiffiffiffiffiffiffiffi

RaðnÞ
p DxðnÞ þ PrðnÞ ohðnÞ

ox
;

ohðnÞ
ot
þ $ � ðuðnÞhðnÞÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

RaðnÞ
p DhðnÞ:

ð39Þ
For expansions truncated at order No, the weak formulation of the system above is given by the following
evolution equations for the stochastic modes:
o x½ �k
ot
þ
XP

l¼0

XP

m¼0

Cklm$ � ð½u�l½x�mÞ ¼
XP

l¼0

XP

m¼0

Cklm
Prffiffiffiffiffiffi
Ra
p
� �

l

r2½x�m þ ½Pr�l
o½h�m
ox

� �
;

o h½ �k
ot
þ
XP

l¼0

XP

m¼0

Cklm$ � ð½u�l½h�mÞ ¼
XP

l¼0

XP

m¼0

Cklm
1ffiffiffiffiffiffi
Ra
p
� �

l

r2½h�m;
ð40Þ
where Cklm � hWkWlWmi=hW2
ki is the multiplication tensor. Since by convention W0 = 1, we have Ck0k = 1 and

Ck0m = 0 for k 6¼ m; Thus the previous equations can be rewritten as:
o½x�k
ot
þ $ � ð½u�0½x�kÞ ¼ �

XP

l¼1

XP

m¼0

Cklm$ � ð½u�l½x�mÞ þ
XP

l¼0

XP

m¼0

Cklm
Prffiffiffiffiffiffi
Ra
p
� �

l

r2½x�m þ ½Pr�l
o½h�m
ox

� �
; ð41Þ

o½h�k
ot
þ $ � ð½u�0½x�kÞ ¼ �

XP

l¼1

XP

m¼0

Cklm$ � ð½u�l½h�mÞ þ
XP

l¼0

XP

m¼0

Cklm
1ffiffiffiffiffiffi
Ra
p
� �

l

r2½h�m: ð42Þ
Consequently, we can write:
Dxp

Dt
¼ ½u�0; ð43Þ

D½x�k
Dt

¼�
XP

l¼1

XP

m¼0

Cklm

Z
R2

Gxðxp � yÞð½u�l½x�mðxpÞ þ ½u�l½x�mðyÞÞ dy�
XP

l¼1

XP

m¼0

Cklm

Z
R2

Gyðxp � yÞ

� ð½v�l½x�mðxpÞ þ ½v�l½x�mðyÞÞ dyþ
XP

l¼0

XP

m¼0

Cklm
Prffiffiffiffiffiffi
Ra
p
� �

l

Z
R2

Lðxp � yÞð½x�mðyÞ � ½x�mðxpÞÞ dy

þ
XP

l¼0

XP

m¼0

Cklm½Pr�l
Z

R2

Gxðxp � yÞð½h�mðxpÞ þ ½h�mðyÞÞ dy; ð44Þ

D½h�k
Dt
¼�

XP

l¼1

XP

m¼0

Cklm

Z
R2

Gxðxp � yÞð½u�l½h�mðxpÞ þ ½u�l½h�mðyÞÞ dy�
XP

l¼1

XP

m¼0

Cklm

Z
R2

Gyðxp � yÞ

� ð½v�l½h�mðxpÞ þ ½v�l½h�mðyÞÞ dyþ
XP

l¼0

XP

m¼0

Cklm
1ffiffiffiffiffiffi
Ra
p
� �

l

Z
R2

Lðxp � yÞð½h�mðyÞ � ½h�mðxpÞÞ dy: ð45Þ
In the previous equation, we have denoted by
Df
Dt
� of

ot
þ ½u�0 � $f ; ð46Þ
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the particle derivative defined with regard to the mean velocity. The stochastic velocity modes have the integral
representation
½u�kðxÞ ¼
�1

2p

Z
R2

Kðx; yÞ½x�kðyÞ dy: ð47Þ
Introducing the smoothed particle approximations of the stochastic vorticity and temperature fields,
xðx; nÞ ¼
XNp

i¼1

XP

k¼0

½Ci�kWkðnÞf�ðx� X iÞ; hðx; nÞ ¼
XNp

i¼1

XP

k¼0

½Hi�kWkðnÞf�ðx� X iÞ; ð48Þ
and defining the stochastic velocity modes on particle Xi as
U iðnÞ �
XP

k¼0

½U i�kWkðnÞ; ½U i�k ¼
�1

2p

XNp

j¼1

½Cj�kK�ðX i;X jÞ; ð49Þ
the particle approximation of (43)–(45) is given by:
DX i

Dt
¼ ½U i�0; ð50Þ

D½Ci�k
Dt

¼�
XNp

j¼1

XP

l¼1

XP

m¼0

CklmS GxðX i � X jÞð½U i�l½Ci�m þ ½U j�l½Cj�mÞ þ GyðX i � X jÞð½V i�l½Ci�m þ ½V j�l½Cj�mÞ
	 


þ
XNp

j¼1

XP

l¼0

XP

m¼0

CklmS
Prffiffiffiffiffiffi
Ra
p
� �

l

LðX i � X jÞð½Cj�m � ½Ci�mÞ

þ
XNp

j¼1

XP

l¼0

XP

m¼0

CklmS½Pr�lGxðX i � X jÞð½Hi�m þ ½Hj�mÞ; ð51Þ

D½Hi�k
Dt

¼�
XNp

j¼1

XP

l¼1

XP

m¼0

CklmS GxðX i�X jÞð½U i�l½Hi�mþ ½U j�l½Hj�mÞþGyðX i�X jÞð½V i�l½Hi�mþ ½V j�l½Hj�mÞ
	 


þ
XNp

j¼1

XP

l¼0

XP

m¼0

CklmS
1ffiffiffiffiffiffi
Ra
p
� �

l

LðX i�X jÞð½Hj�m� ½Hi�mÞ; ð52Þ
for i = 1, . . . ,Np and k = 0, . . . ,P. The initial conditions for the above system of coupled ODEs are:
½Ci�kð0Þ ¼ S
hWkxðX ið0Þ; 0; nÞi

hW2
ki

; ½Hi�kð0Þ ¼ S
hWkhðX ið0Þ; 0; nÞi

hW2
ki

; ð53Þ
for k = 0, . . . ,P and i = 1, . . . ,Np.
Remarks. As seen from (50), the particles are displaced with the mean velocity field. The stochastic modes of

the particle strengths now evolve according to two distinct mechanisms. The first mechanism is the diffusion
operator which couples all of the stochastic modes, unless the Rayleigh and Prandtl numbers are both certain.
In this case, the stochastic modes independently diffuse with all the same diffusion coefficient Pr=

ffiffiffiffiffiffi
Ra
p

or
1=

ffiffiffiffiffiffi
Ra
p

, for the vorticity and temperature, respectively. The second mechanism corresponds to variation in
the mode strengths, due to the convection by the stochastic velocity field. If the velocity field is certain,
[Ui]k>0 = 0 for all particles, and only the diffusion and buoyancy terms remain in the right-hand side of
(51),(52). Note that [Ui]k>0 = 0 implies that [Ci]k>0 = 0 as well.

An important remark concerns the cost of the evaluation of the stochastic modes of the particles’ veloc-
ity. Because the particle positions are deterministic, the hybrid mesh-particle method is still practical. The
determination of the projection mesh-points and coefficients for each particle is in fact identical to that of
the deterministic method. As a consequence, the CPU cost of the computation of velocity modes is roughly
(P + 1) times larger than the cost of the deterministic evaluation for the same number of particles (in fact
slightly less as the computation of the projection coefficients is factored on the P + 1 modes). This CPU
cost is essentially dominated by the resolution of the Poisson streamfunction equations, which are
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decoupled. Thus, straightforward parallelization strategies can be envisioned. Similarly, the velocity inter-
polation at the particle centers involves a unique evaluation of the interpolants which are the same for all
the stochastic modes.

Another remark concerns the size of the system of coupled ODEs. For Np particles and P + 1 stochastic
modes, we have to advance in time 2Np positions and 2(P + 1)Np strengths, giving a total of 2(P + 2)Np vari-
ables. The efficiency of the method will thus depend on the ability of the selected basis to represent the uncer-
tainty with a minimal number of stochastic modes. To integrate these ODEs, the deterministic time-stepping
scheme can still be used, thus preserving the whole structure of existing deterministic particles code. Only a the
evaluation of the right-hand side of the ODEs is altered. The cost of the ODEs’ right-hand side evaluation is
obviously critical for the performance of the method. We have already mentioned that the velocity calcula-
tions likely scales with the number of modes for given number of particles, and can be parallelized, at least
in the particle-mesh approach. At first glance, it appears that the CPU cost of the evaluation of the right-hand
side of the strength ODEs is (P + 1)3 times greater than for its deterministic counterpart. This is an overly
conservative estimate, because (1) the multiplication tensor is sparse, and (2) since the particle positions are
deterministic many of the integral kernels are identical. In the computations below, we take advantage of this
feature by computing and storing the kernels when the near-neighbors lists are constructed. To further
improve CPU performance, the stochastic products UiCi, UiHi, ðPr=

ffiffiffiffiffiffi
Ra
p
ÞCi, PrCi and ð1=

ffiffiffiffiffiffi
Ra
p
ÞHi are first

computed, in an efficient vectorized way (with inner loop on particle index) before considering the right-hand
side assembly. Doing so, applications with a large number of particles and high-order expansions are possible
even on small platforms, as illustrated in Section 5.

4. Validation

In this section, we present two computational examples of particle simulations with polynomial chaos
expansion. Our objective is to validate the proposed extension of the deterministic particle scheme to stochas-
tic situations. To allow for a detailed analysis of the treatment of the stochastic diffusion and convection
terms, we consider two examples consisting of the purely diffusive evolution of a circular vortex, and of the
purely convective transport of a passive scalar.

4.1. Diffusion of a circular vortex

In this section, we consider the problem of the diffusion of a circular exponential vortex without thermal
effect. The governing equation for the vorticity field is
ox
ot
þ u � $x ¼ mr2x; ð54Þ
with an initial condition of the form
xðr; t ¼ 0Þ ¼ exp½�r2=d�
pd

; r ¼ jxj: ð55Þ
For this setting, the vortex induces a circular velocity field, with azimuthal component v(r, t) and no radial
component. The vortex shape is preserved, but due to diffusion the vortex core spreads with time, and so
the velocity field is time dependent. The convective term vanishes, and the diffusion coefficient m can be lumped
with time. Consequently, for uncertain m, the problem corresponds to uncertainty in the core spreading time
scale. We shall consider an uncertain diffusion coefficient of the form:
mðnÞ ¼ m0 þ m1n; m0 ¼ 0:005; m1 ¼ m0=2; ð56Þ

where n is uniformly distributed on [�1,1]. Thus the diffusion coefficient has a uniform distribution in the
range [0.0025, 0.0075]. The total circulation of the vortex

R
x dx ¼ 1 is an invariant of the flow, while the total

circulations of the stochastic vorticity modes (k > 0) are all zero, i.e.
Z
R2

½x�kðx; tÞ dx ¼ 0; 8t and k P 1: ð57Þ
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These identities can also be verified based on the exact expression of the vorticity:
xeðr; t; nÞ ¼
1

pðd þ 4mðnÞtÞ exp
�r2

d þ 4mðnÞt

� �
; ð58Þ
or the azimuthal velocity:
veðr; t; nÞ ¼
1

2pr
1� exp

�r2

d þ 4mðnÞt

� �� �
:

For the particle simulation, the complete set of particle equations is solved, including the convection of the
particles with the mean velocity field and stochastic coupling terms $ � ð½u�l½x�mÞ, even though the latter are
not expected to contribute because all stochastic modes of the velocity should be orthogonal to the stochastic
modes of the vorticity gradient. The problem is solved for an initial condition corresponding to d = 10pm0. The
evolution equations are integrated using a third-order Runge–Kutta scheme with time step Dt = 0.02. The
polynomial order No = 5, so that number of terms in the stochastic polynomial expansion is P + 1 = 6.
The particle approximation uses a smoothing parameter � = 0.05. The mesh for the Poisson solver has a spac-
ing hg = �. Remeshing is performed every 10 time steps; the distance between neighboring particles

ffiffiffi
S
p
¼ �=2

after remeshing.
In Fig. 1, we compare the computed and exact values of the mean and standard deviation of the vorticity as

a function of the distance to the vortex center, r, and at different times, 1 6 t 6 30. The computed values
reported correspond to the particle approximation on the semi-line y = 0, x P 0, while the exact values are
obtained by means of accurate Gauss–Lobatto integrations of the analytic solution (58):
hxeðr; t; nÞi ¼
1

2

Z 1

�1

xeðr; t; nÞ dn; ð59Þ

r2ðxeðr; t; nÞÞ ¼
1

2

Z 1

�1

x2
eðr; t; nÞ dn� hxeðr; t; nÞi2: ð60Þ
An excellent agreement is observed for all cases shown in Fig. 1. The plots show that as the mean vorticity field
spreads, its variance increases (up to t � 10), followed by a slower decay. The presence of a node point where
the standard deviation of x(r) exhibits a local minimum is clearly visible. This node slowly moves to larger
distance from the vortex center as time progresses.

Fig. 2 compares computed and exact radial profiles of the mean and standard deviation of the azimuthal
velocity. Again, an excellent agreement between computed and exact solutions is observed. The plots show
that at any fixed r, the mean velocity decays monotonically with time. On the contrary, for given r > 0 there
is a first period of time where the velocity standard deviation increases, followed by a second stage where it
decays as one may have expected.

Fig. 3 shows the evolution of the first five stochastic modes [x]k(r, t) for 0 6 r 6 2. Also shown for compar-
ison are profile of the mean mode [x]0. Mode 1 expresses the linear departure from the mean solution as the
first Legendre polynomial W1 = n. The negative values of [x]1 at early times in the neighborhood of the vortex
center express the fact that when m (i.e. n) increases the diffusion becomes more active and so the vorticity in
this region experiences lower values. At larger distance from the vortex center, an increase in the diffusion
coefficient yields on the contrary larger vorticity values, and so [x]1 > 0 for larger r. It is interesting to note
that as time increases, first [x]1 quickly increases in magnitude for r . 0 before leveling-off for 10 6 t 6 30,
and then undergoes a slow decay. It is noted that as time increases, the support of [x]1 becomes broader.
Higher order stochastic modes also exhibit similar three-stages dynamics (initial increase, leveling-off and slow
decay) and broader support as time increases. For higher modes, however, the initial increase is delayed. Fur-
thermore, one observes that [x]k at r = 0 is negative for k odd and positive for k even. Finally, one can appre-
ciate the convergence of the stochastic polynomial expansion by noticing the decay in the magnitudes of [x]k
as k increases. In fact, a computation with lower order No = 3 revealed no significant differences on the result-
ing mean and standard deviation fields as reported in Figs. 1 and 2. In this simulation, the number of particles
increases (due to vorticity spreading) from initially Np = 8192 to Np = 38,720 when the computations were
stopped. The CPU time was roughly 3 h on a desktop PC.
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Fig. 3. Radial profiles of the vorticity modes [x]k(r, t) plotted at time t = 1, 2, 3, 4, 5, 10, 15, 20, 25, 30.
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4.2. Convection of a passive scalar

In this section, a second test problem is considered which consists of the convection of a passive scalar. The
stochastic problem is specified in terms of the transport equation:
oc
ot
þ u � $c ¼ 0; ð61Þ
with given, uncertain, divergence-free velocity field u and the deterministic initial condition:
cðx; 0Þ ¼ exp½�r2=d�
pd

; r ¼ jx� c0j: ð62Þ
We set c0 = ey, d = 0.05 and
uðxÞ ¼ �x ^ ezð1þ 0:075nÞ: ð63Þ

Again, the random variable n is assumed to be uniformly distributed over [�1,1], and so the convective field
corresponds to solid rotation about the origin with an uncertain rotational speed of 1 ± 0.075 round(s) per 2p
units of time. The center of the concentration field, c, evolves according to:



Fig. 4.
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cðt; nÞ ¼ cos½p=2þ ð1þ 0:075nÞt�ex þ sin½p=2þ ð1þ 0:075nÞt�ey ; ð64Þ

and the exact scalar value may be expressed as:
ceðx; t; nÞ ¼
1

2d
exp

�jx� cðt; nÞj2

d

" #
: ð65Þ
For the inputs above, at t = k(2p) the center of the scalar distribution is uniformly distributed over an arc with
length 0.015(2p)k 	 1k, while the radius of the scalar distribution is estimated as 	 2

ffiffiffi
d
p
	 0:5. These estimates

show that the uncertain velocity field induces in just one revolution an uncertainty in the scalar field location
which is of the same order as the diameter of the distribution of c. Thus, the present problem constitutes a
challenging test, as high-order expansions are needed in order to represent solution at even moderate times.
Note that these challenges are inherent to the stochastic nature of the problem, and are not associated with
the selected Lagrangian discretization scheme. Specifically, high-order PC expansions would also be needed
if an Eulerian discretization scheme is used. Note, however, that in the latter case the numerical solution
would face additional difficulties associated with the transport of a non-diffusiving scalar, and that these dif-
ficulties would also arise in a deterministic setting. To address these difficulties, Eulerian approaches rely on
elaborate discretizations (using for instance flux limiters), but extension of these discretizations to situations
involving random velocity fields is not immediate. Particle methods, on the other hand, are well-suited for con-
vection-dominated problems. One of the objectives of the present tests is to verify that this remains the case
when the convective field is uncertain.

The problem is first solved for a particle discretization with � = 0.025, a third-order Runge–Kutta scheme
with Dt = 2p/400, and large polynomial order No = 20. Remeshing is applied every 10 iterations, with spacingffiffiffi

S
p
¼ �=2. The computed means and standard deviations of the scalar fields after 1 and 2 revolutions, together

with the corresponding exact solutions, are plotted in Fig. 4. The agreement between particle and exact solu-
tions is again excellent.

We present in Fig. 5 the time-evolution of the spectrum E2(k), defined according to:
E2ðkÞ ¼
XNp

i¼1

½Ci�2k ; ð66Þ
where Ci is the scalar strength of the ith particle. E2 essentially measures the energy in the individual scalar
modes. One observes that the energy of mode zero decays, which reflects increasing uncertainty in the location
where the scalar is concentrated. The energies of the higher modes k > 0 on the contrary steadily increase. It is
however observed that the spectra monotonically decrease as k increases, denoting the convergence of the
polynomial expansion. However, as time progresses, the decay of the spectrum with k becomes slower, indi-
cating that the number of stochastic modes needed to suitably represent the solution increases with time.
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Fig. 6. Top: evolution of the first invariants of the even modes I(k). Bottom: distribution of the particles after 2 revolutions. Also plotted
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We now focus on the conservation of first invariants in the numerical solution. Since the initial condition is
deterministic, we have for all time
Fig. 7.
and 5.
Ið0Þ ¼
XNp

i¼1

½Ci�0 ¼ 1; IðkÞ ¼
XNp

i¼1

½Ci�k ¼ 0; k P 1: ð67Þ
The proposed method being conservative at the discrete level, it is expected that these invariants are also con-
served in the computations. However, due to remeshing, this is not necessarily the case. Specifically, in order to
avoid an unreasonable increase in the number of particles, only particles with strengths exceeding a predeter-
mined threshold are retained after remeshing, while others are discarded. As a result, the invariants are not ex-
actly conserved. The error that is incurred depends on the threshold value used to decide whether particles are
kept or omitted. In the present computation, this criterion consists of discarding particles whose strength satisfy
|[Ci]k| < 10�8 for all k. Fig. 6 shows the evolution |I(k)| as a function of the number of revolutions for even modes,
k P 2. It is observed that the invariants I(k > 0) do in fact vary with time. Similar observation is made for the
odd modes, which however have smaller magnitudes. However, the conservation ‘‘errors’’ associated with the
first invariants are small, particularly compared to the energies E2(k), and consequently deemed acceptable.
Thus, further refinement of the remeshing procedure was not attempted. Note that due to the uncertainty in
the convective field, the domain covered by the particles must extend beyond the support of a single realization
(or in other words the support of the initial distribution). This is achieved during remeshing, specifically through
the introduction of additional particles around the boundaries of the prevailing particle distribution. As is the
case for particle removal, the introduction of new particles depend on the selected tolerance. Numerical tests
have shown that conservation of the invariants considered above improves by lowering the tolerance level. How-
ever, this improvement comes at the cost of a significant increase in the number of particles and with only small
improvement of the statistics, as more resources are added in regions where the scalar modes are very small. This
is illustrated in Fig. 6, which simultaneously depicts the particle distribution and contours of the variance in the
scalar field. In particular, the figure indicates that the region where significant variance occurs is contained well
within the region covered by the particles, and thus the addition of new particles is beyond the point of dimin-
ishing returns. These observations also justify the selection of the tolerance value.

In another series of numerical tests, the order of the PC expansion was progressively decreased while keep-
ing constant the parameters of the particle discretization. The aim was to assess the robustness of the predic-
tions to under-resolved polynomial expansions. Spectra for No = 10 and No = 5 are plotted in Fig. 7, and are
contrasted with previous predictions obtained with No = 20. The comparison shows that with No = 10 the
predictions can be considered to be suitably resolved up to 1.5 revolutions, while for No = 5 the resolution
becomes insufficient after just 3/4 of revolution. Truncation to lower order essentially affects the highest mode,
while for k < No the energy is nearly unaffected by the selected value of No. Additional insight into the impact
of expansion order can be gained from Fig. 8, which depicts contours at t = 4p of mode k = 4 computed using
No = 5 and 10, and of mode k = 9 computed with No = 10 and No = 20. It is seen that with No = 5 the pre-
diction of mode 4 is clearly corrupted. For mode 9, the predictions obtained with No = 10 and 20 are close,
though noticeable differences are still observed. The impact of resolution effects can also be appreciated from
Fig. 9, which illustrates the standard deviation fields for different orders at the end of the computations.
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5. Application to natural convection

In this section, we discuss the implementation of the stochastic mesh-particle scheme to simulate the evo-
lution of a localized hot patch of fluid in an infinite domain. The initial conditions are:
xðx; t ¼ 0Þ ¼ 0; hðx; t ¼ 0Þ ¼ expð�10r8Þ; r ¼ jxj: ð68Þ
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For the range of Rayleigh numbers considered here, the evolution of the flow that can be summarized as fol-
lows. At early stages, the hot patch starts to rise due to buoyancy, and a pair of counter-rotating vortices is
created on its sides. The flow induced by the vortices distorts the patch, and the latter experiences higher veloc-
ities at its centerline. As time increases, the distortion becomes more pronounced and the patch is strained in a
filament trapped in the two rolling vortices. At the centerline, a smaller secondary patch of hot fluid subse-
quently detaches, and a second pair of counter-rotating vortices is formed; see Figs. 11 and 12.

One can easily draw a qualitative picture of the dependence with the Rayleigh number of these processes
summarized above. For instance, at lower Rayleigh numbers one would expect less energetic vortices, as
higher mixing rates would occur during the rollup process. The eventual interruption of successive detach-
ments and rollups due to viscous stabilization would also be anticipated. However, from a quantitative per-
spective, prediction of the dependence of even integral quantities on variabilty in the Rayleigh number is more
challenging. Indeed, variability in the Rayleigh number not only affects diffusion rates (as in Section 4.1), the
convective field (as in Section 4.2), but also the complex coupling between the thermal and convective fields.

To investigate these effects, the full set of Boussinesq equations is solved. The Prandtl number Pr = 0.71.
An uncertain Rayleigh number is considered, Ra = 2.5 · 105 ± 5 · 104, and once again a uniform pdf is
assumed, leading to the following one-dimensional Legendre expansion:
RaðnÞ ¼ ½Ra�0 þ ½Ra�1n ¼ 2:5� 105 þ 5� 104n; pðnÞ ¼
1=2; n 2 ½�1; 1�;
0; otherwise:

�

Evaluation of the PC expansion of the factor 1=
ffiffiffiffiffiffi
Ra
p

, which features in the governing equations, is performed
in two steps. First, the expansion of 1/Ra is computed by inverting the exact Galerkin product [26,11]:
Ra� 1

Ra
¼
X

k

X
l

X
m

Cklm½Ra�l
1

Ra

� �
m

 !
Wk � 1W0: ð69Þ
Second, the expansion of the square root of 1/Ra is extracted by solving a non-linear system of equations
expressing again the Galerkin product [11]:
X

l

X
m

Cklm
1ffiffiffiffiffiffi
Ra
p
� �

l

1ffiffiffiffiffiffi
Ra
p
� �

m

¼ 1

Ra

� �
k

; k ¼ 0; . . . ;No: ð70Þ
To extract the ‘‘positive’’ square root, an iterative Newton method is employed with starting values
½1=

ffiffiffiffiffiffi
Ra
p
�0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
½Ra�0

p
and ½1=

ffiffiffiffiffiffi
Ra
p
�k>0 ¼ 0. The resulting probability density function of 1=

ffiffiffiffiffiffi
Ra
p

is plotted in
Fig. 10; a PC expansion with No = 12 is used. The PC approximation of 1=

ffiffiffiffiffiffi
Ra
p

is also reported in Fig. 10,
which indicates that the flow will be less diffusive as n increases. Also note that h1=

ffiffiffiffiffiffi
Ra
p
i 	 2:01� 10�3 slightly

differs from 1=
ffiffiffiffiffiffiffiffiffiffi
hRai

p
¼ 2� 10�3.

In the computations, we set � = 1/30, and remesh spacing
ffiffiffi
S
p
¼ �=2. The mesh has spacing hg = �, giving an

average of four particles per cell. Time integration is performed by applying the second-order Adams–Bash-
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forth scheme, with time step Dt = 0.2, except for iterations that immediately follow remeshing, where a sec-
ond-order Runge–Kutta scheme is employed. Remeshing is performed every four iterations.

Fig. 11 compares the mean temperature field [h]0 with the deterministic temperature field corresponding to
the mean Rayleigh number ÆRaæ, at times t = 10 and t = 20. At the early time t = 10, the two fields are nearly
identical, the stochastic mean field just being slightly smoother than the deterministic prediction. On the con-
trary, at t = 20 noticeable differences appear, particularly in the zone of high shear around the primary vortex,
in the core of the secondary vortices, and at the centerline of the leading hot spot. As discussed previously,
these differences arise due to the non-linearity of the flow, as well as the small differences in the mean diffusion
coefficient and the square root of the inverse mean Rayleigh number. Similar conclusions can be drawn from
the inspection of the corresponding mean and deterministic vorticity fields compared in Fig. 12. Note how the
size and location of the mean secondary vortices are affected by the variability in Ra.

Additional insight into the variability of the flow is sought through the analysis of the standard deviations
of the fields. Fig. 13 shows the mean and standard deviation of the temperature field, and the magnitude and
standard deviation of the vorticity field at t = 20. Only half of the domain is shown, as the temperature field is
symmetric with respect to the axis x = 0, whereas the vorticity field is antisymmetric. For the temperature
field, it is observed that the areas of greatest variability are located on the centerline of the leading patch
of hot fluid and on the external sides of the fluid entrained by the primary vortex. Note that in some areas
the temperature standard deviation is as high as one third of the local mean. In other areas, however, such
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as the core of the primary vortex, only small variability of the temperature occurs. Similar trends can be
observed for the vorticity field, though higher variation is noted around the edges of the primary vortex where
vorticity filaments of opposite sign are rolling up. In these regions, variability in Ra has a significant influence
on the vortex roll-up, and the location of the filament structures has a high level of uncertainty.

To assess the performance of the particle-mesh scheme, we plot in Fig. 14 the evolution of Np as well as the
particle distribution at t = 20. The number of particles increases steadily with time, which is expected since the
support of the stochastic solution is also increasing. At t = 20, the number of particles Np 	 150,00 whereas
Np = 13,000 at the start of the computations. Also note that the particle distribution properly covers the sup-
port of the mean and standard deviation fields depicted earlier, and even extends into regions where the solu-
tion modes are essentially vanishing. Thus, a less conservative criterion for particle removal could have safely
been used. Also note that the computation simulation was actually carried up to t = 27.5, time at which the
number of particles exceeded than 200,000. The CPU time used on a desktop PC was about 10 h. Thus, the
present experience shows that the overhead due to stochastic polynomial expansion can be manageable, even
when a large number of particles is used.

As mentioned previously, a PC expansion with No = 12 was used in the present simulation. In order to ver-
ify the suitability of the expansion, we plot in Fig. 15 the spectra of the vorticity and temperature fields. From
these spectra, it can be concluded that the expansion is clearly over-resolved at early times (t 6 7), where a
third- or fourth-order expansion would have been sufficient. The energy of the low-order stochastic modes
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Fig. 13. Top: mean temperature field [h]0 (left) and standard deviation (right) at t = 20. Bottom: magnitude of the mean vorticity field
|[x]0| (left) and standard deviation of x (right) at t = 20.
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slowly increases up to t 	 7, when a first transition occurs, after which the energy increases at a higher pace.
This time actually corresponds to the formation of the primary vortices. The primary vortices then experience
a lower rise velocity than the bulk of the hot fluid, and filamentation around its core occurs (see Fig. 12). This
is accompanied by the sharp increase of the mode energies during the period t 2 [8,13]. At later stages, after
Fig. 14. Evolution of the number of particles in the simulation, and the particle distribution at t = 20.
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detachment of the primary vortices, the energy of the stochastic modes levels off. Around t = 17–18, the for-
mation of the secondary vortices begins, and the higher order modes k > 8 again experience a rapid growth up
to the time at which the secondary vortices detach. Note that during this process the lower order modes are
less affected than the higher order modes. Consequently, the stochastic dynamics lead to flatter and broader
spectra as time advances, denoting the need for additional modes for suitable resolution. For instance,
between t = 10 and t = 20 the energy ratio between modes 1 and 12 has reduced from more than 10 order
of magnitude to about 6. Overall, the expansion order was deemed sufficient, and this was verified through
inspection of the spatial structure of the stochastic modes (not shown), and their rapid decay with increasing
mode number.

As a final check of the simulation accuracy, the errors on the first invariant of the temperature modes Ih(k)
are plotted in Fig. 16. The evolution of the invariant errors is reported only for the temperature modes, as the
vorticity modes are anti-symmetric and thus the first-order errors tend to naturally balance out. Fig. 16 shows
that the errors increase steadily, with small modulation during vortex formation. As discussed in the previous
section, these errors are entirely due to the remeshing scheme, which in particular removes particles with low
strengths (a discussion on the effect of particle removal in the deterministic context can be found in [14]). How-
ever, it is seen that the error on the invariants are low and are smaller than 10�7 for all modes. Compared to
the mean thermal energy of the system, Ih(k = 0) = 1.6, the first order errors are evidently negligible.
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In the analysis above, we have focused on the first and second statistical moments of the solution. One
should note, however, that the PC expansion provides the local probability law of any observable (functional)
of the flow variables. In particular, since in the present problem the input uncertainty is bounded, the stochas-
tic representation readily yields estimates of temperature maxima at any point of the domain. As an example,
we show in Fig. 17 the local sensitivities Sh and Sx of the temperature and vorticity fields at t = 20. The sen-
sitivity of h is defined by:
lo
Sh ¼
oh
oRa

����
Ra¼hRai

¼ oh
on

oRa
on

� ��1
�����
n¼0

¼ 1

Ra½ �1
oh
on

����
n¼0

:

Using the PC expansion of h and the particle approximation, the local sensitivity at point x around ÆRaæ is
ShðxÞ ¼
XNo

k¼0

XNp

i¼1

g�ðx� X iÞ½Hi�k
oWk

on
ðn ¼ 0Þ:
Note that this sensitivities could be estimated at any Ra value in the uncertainty range.

6. Conclusion

A new method for parametric uncertainty quantification in fluid flow has been proposed in the context of
Lagrangian particle methods. The method combines the advantages and flexibility of particle discretizations
(mesh-less, robustness, stability, low diffusivity, etc.) with efficient uncertainty representations involving PC
expansions.

The essential feature of the method is the use of a single set of particles to transport the stochastic modes of
the solution. The Lagrangian positions of the particles are updated using the mean velocity field. This
approach overcomes the difficulties that would arise if different sets of particles are defined for different modes.
It further allows for the re-use of fast methods, including particle-mesh techniques. Another key aspect of the
method is the conservative character at the discrete level of the treatment of the interaction between stochastic
modes. The discretization was found to be stable and essentially diffusion-free, thus allowing uncertainty
quantification in slightly viscous flow, and transport at high, or even infinite Péclet numbers by uncertain
velocity fields. These properties were shown on the basis of idealized validation problems and illustrated by
a larger scale computation showing that the method can deal efficiently and accurately with complex flows
involving a large number of particles.
cal sensitivity in temperature (left half of the plot, x < 0) and vorticity (righthalf, x >0) with regard toRaaboutÆRaæ . Contours starts at ± D with successive incrementsD.D = 125· 10� 7for temperature and 2· 10� 6for vorticity.O.P. Le Maıˆ
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The present work has focused on a basic construction that combines a particle-mesh scheme with uncer-
tainty quantification method based on the PC formalism, and applications of the resulting stochastic scheme
were restricted to unbounded flows. Additional work is consequently needed to extend the formulation to
more general conditions and gain better understanding of the range of possible applications. For instance,
generalization of the formulation to accommodate solid boundaries would be desirable. This could be
achieved, for instance, by adapting the scheme of Koumoutsakos et al. [20], in which a linear problem for
the vorticity flux across the boundary is solved at each time-step. Application of the PC formalism to this
scheme would result in a set of decoupled problems for the stochastic vorticity modes, thus preserving the fea-
tures of the deterministic formulation. Another possible refinement of the present construction concerns the
remeshing algorithm. In particular, more elaborate constructions should be sought, which would improve
accuracy and allow conservation of flow invariants. In particular, accurate approaches developed for deter-
ministic flows [8] appear to be readily amenable to PC expansions using the presently developed framework.

Appendix A. Projection and interpolation schemes

In the projection step, the value of the vorticity field at the mesh points is computed based on knowledge of
the particle positions and strengths. The mesh is a uniform grid with cell size hg in each direction. The vorticity
value at a grid point xg = (xg,yg) is expressed as:
xðxgÞ ¼
XM

i¼1

Ci

h2
g

Kðjxg � X ij=hgÞKðjyg � Y ij=hgÞ;
where
KðuÞ ¼
ð1� u2Þð2� uÞ=2 if 0 6 u < 1;

ð1� uÞð2� uÞð3� uÞ=6 if 1 6 u 6 2;

0 otherwise:

8><
>:
The strength of a particle is therefore distributed on the 16 nearest mesh points.
To interpolate the mesh velocity onto the particles, the same interpolation scheme is used. Specifically, we

have:
uðX iÞ ¼
X

g

uðxgÞKðjxg � X ij=hgÞKðjyg � Y ij=hgÞ;
where the summation index g runs over all the mesh points index.
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[11] B.J. Debusschere, H.N. Najm, P.P. Pébray, O.M. Knio, R.G. Ghanem, O.P. Le Maı̂tre, Numerical challenges in the use of
polynomial chaos representations for stochastic processes, SIAM J. Sci. Comput. 26 (2) (2004) 698–719.



O.P. Le Maı̂tre, O.M. Knio / Journal of Computational Physics 226 (2007) 645–671 671
[12] P. Degond, S. Mas-Gallic, The weighted particle method for convection diffusion equations – part 1: The case of an isotropic
viscosity, Math. Comput. 33 (53) (1989) 485–507.

[13] P. Degond, F.J. Mustieles, A deterministic approximation of diffusion using particles, SIAM J. Sci. Comput. 1 (2) (1990) 293–310.
[14] J.D. Eldredge, Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method, J. Comput. Phys.

221 (2007) 626–648.
[15] J.D. Eldredge, A. Leonard, T. Colonius, A general deterministic treatment of derivatives in particles methods, J. Comput. Phys. 180

(2002) 686–709.
[16] R. Ghanem, S. Dham, Stochastic finite element analysis for multiphase flow in heterogeneous porous media, Transp. Porous Media

32 (1998) 239–262.
[17] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, second ed., Dover, 2002.
[18] T.D. Hien, M. Kleiber, Stochastic finite element modeling in linear transient heat transfer, Comput. Meth. Appl. Mech. Eng. 144

(1997).
[19] O.M. Knio, O.P. Le Maı̂tre, Uncertainty propagation in CFD using polynomial chaos decomposition, Fluid Dyn. Res. 38 (2006) 616–

640.
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